OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 627–632

Plane-wave diffraction by an obtuse-angled dielectric wedge

G. Gennarelli and G. Riccio  »View Author Affiliations

JOSA A, Vol. 28, Issue 4, pp. 627-632 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (982 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Uniform high-frequency solutions in closed form are derived for the diffraction of a plane wave normally impacting on a penetrable wedge having an obtuse apex angle and arbitrary dielectric permittivity. The approach used here takes advantage of a physical optics approximation for the electric and magnetic equivalent surface currents in the scattering integrals related to the inner region of the wedge and the surrounding space. Numerical tests and comparisons with finite-difference time-domain results demonstrate the accuracy and effectiveness of the proposed solutions.

© 2011 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: December 20, 2010
Revised Manuscript: February 8, 2011
Manuscript Accepted: February 8, 2011
Published: March 23, 2011

G. Gennarelli and G. Riccio, "Plane-wave diffraction by an obtuse-angled dielectric wedge," J. Opt. Soc. Am. A 28, 627-632 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. T. Bates, “Wavefunctions for prisms,” Int. J. Electron. 34, 81–95 (1973). [CrossRef]
  2. T. S. Yeo, D. J. Wall, and R. H. T. Bates, “Diffraction by a prism,” J. Opt. Soc. Am. A 2, 964–970 (1985). [CrossRef]
  3. S. Berntsen, “Diffraction of an electric polarized wave by a dielectric wedge,” SIAM J. Appl. Math. 43, 186–211 (1983). [CrossRef]
  4. S. Y. Kim, J. W. Ra, and S. Y. Shin, “Diffraction by an arbitrary-angled dielectric wedge: part I. Physical optics approximation,” IEEE Trans. Antennas Propag. 39, 1272–1281 (1991). [CrossRef]
  5. S. Y. Kim, J. W. Ra, and S. Y. Shin, “Diffraction by an arbitrary-angled dielectric wedge: part II. Correction to physical optics solution,” IEEE Trans. Antennas Propag. 39, 1282–1292 (1991). [CrossRef]
  6. S. Y. Kim, “Diffraction coefficients and field patterns of obtuse angle dielectric wedge illuminated by E-polarized plane wave,” IEEE Trans. Antennas Propag. 40, 1427–1431 (1992). [CrossRef]
  7. R. E. Burge, X. C. Yuan, B. D. Carroll, N. E. Fisher, T. J. Hall, G. A. Lester, N. D. Taket, and C. J. Oliver, “Microwave scattering from dielectric wedges with planar surfaces: a diffraction coefficient based on a physical optics version of GTD,” IEEE Trans. Antennas Propag. 47, 1515–1527 (1999). [CrossRef]
  8. A. D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge,” Proc. R. Soc. London A 455, 2655–2686 (1999). [CrossRef]
  9. M. A. Salem, A. H. Kamel, and A. V. Osipov, “Electromagnetic fields in presence of an infinite dielectric wedge,” Proc. R. Soc. London A 462, 2503–2522 (2006). [CrossRef]
  10. R. J. Luebbers, “Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss,” IEEE Trans. Antennas Propag. 32, 70–76 (1984). [CrossRef]
  11. J. F. Rouviere, N. Douchin, and P. F. Combes, “Diffraction by lossy dielectric wedges using both heuristic UTD formulations and FDTD,” IEEE Trans. Antennas Propag. 47, 1702–1708(1999). [CrossRef]
  12. G. Stratis, V. Anantha, and A. Taflove, “Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD,” IEEE Trans. Antennas Propag. 45, 1525–1529 (1997). [CrossRef]
  13. J. H. Chang and A. Taflove, “Three-dimensional diffraction by infinite conducting and dielectric wedges using a generalized total-field/scattered-field FDTD formulation,” IEEE Trans. Antennas Propag. 53, 1444–1454 (2005). [CrossRef]
  14. G. Gennarelli and G. Riccio, “A uniform asymptotic solution for diffraction by a right-angled dielectric wedge,” PIERS Online 6, 746–749 (2010). [CrossRef]
  15. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE 62, 1448–1461 (1974). [CrossRef]
  16. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef] [PubMed]
  17. G. Riccio, “Uniform asymptotic physical optics solutions for a set of diffraction problems,” in Wave Propagation in Materials for Modern Applications, A.Petrin, ed. (InTech, 2010), pp. 33–54.
  18. C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).
  19. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech, 2000).
  20. S. D. Gedney, “An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited