OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 633–640

Optical anisotropy induced by torsion stresses in LiNbO 3 crystals: appearance of an optical vortex

Ihor Skab, Yurij Vasylkiv, Viktoriya Savaryn, and Rostyslav Vlokh  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 633-640 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (865 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the results of studies of the torsion effect on the optical birefringence in LiNbO 3 crystals. We found that the twisting of those crystals causes a birefringence distribution revealing nontrivial peculiarities. In particular, they have a special point at the center of the cross section perpendicular to the torsion axis where the zero birefringence value occurs. It has also been ascertained that the surface of the spatial birefringence distribution has a conical shape, with the cone axis coinciding with the torsion axis. We revealed that an optical vortex, with a topological charge equal to unity, appears under the torsion of LiNbO 3 crystals. It has been shown that, in contrast to the q plate, both the efficiency of spin-orbital coupling and the orbital momentum of the emergent light can be operated by the torque moment.

© 2011 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: August 4, 2010
Revised Manuscript: November 4, 2010
Manuscript Accepted: February 2, 2011
Published: March 25, 2011

Citation
Ihor Skab, Yurij Vasylkiv, Viktoriya Savaryn, and Rostyslav Vlokh, "Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex," J. Opt. Soc. Am. A 28, 633-640 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Soskin and M. Vasnetsov, “Singular optics,” Prog. Opt. 42, 219–276 (2001). [CrossRef]
  2. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17, 221–223 (1992). [CrossRef] [PubMed]
  3. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  4. A. V. Volyar, “Fiber singular optics,” Ukr. J. Phys. Opt. 3, 69–96(2002). [CrossRef]
  5. A. Desyatnikov, T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848–10863(2010). [CrossRef] [PubMed]
  6. G. Cincotti, A. Ciatoni, and C. Palma, “Laguerre–Gaussian and Bessel–Gaussian beams in uniaxial crystals,” J. Opt. Soc. Am. A 19, 1680–1688 (2002). [CrossRef]
  7. A. Volyar and T. Fadeyeva, “Laguerre-Gaussian beams with complex and real arguments in uniaxial crystals,” Opt. Spectrosc. 101, 450–457 (2006). [CrossRef]
  8. A. Ciattoni, G. Cincotti, and C. Palma, “Circular polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163–171 (2003). [CrossRef]
  9. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79, 053815 (2009). [CrossRef]
  10. F. Flossman, U. T. Schwarz, M. Maier, and M. R. Dennis, “Polarization singularities from unfolding an optical vortex through a birefringent crystal,” Phys. Rev. Lett. 95, 253901 (2005). [CrossRef]
  11. M. V. Berry and M. R. Jeffrey, “Chapter 2. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics,” Prog. Opt. 50, 13–50 (2007). [CrossRef]
  12. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685–690 (2005). [CrossRef]
  13. R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003). [CrossRef]
  14. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocation (Institute of Physics, 1999).
  15. Y. Egorov, T. Fadeyeva, and A. Volyar, “The fine structure of singular beams in crystals: colours and polarization,” J. Opt. A: Pure Appl. Opt. 6, S217–S228 (2004). [CrossRef]
  16. T. A. Fadeyeva, and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010). [CrossRef]
  17. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  18. C. N. Alexeyev, E. V. Borshak, A. V. Volyar, and M. A. Yavorsky, “Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress,” J. Opt. A: Pure Appl. Opt. 11, 094011 (2009). [CrossRef]
  19. C. N. Alexeyev and M. A. Yavorsky, “Optical vortices and the higher order modes of twisted strongly elliptical optical fibres,” J. Opt. A: Pure Appl. Opt. 6, 824–832 (2004). [CrossRef]
  20. R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998). [CrossRef]
  21. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  22. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “The elasto-optic effect in LiNbO3 crystals under the torsion,” Fiz. Tverd. Tela 33, 2467–2470 (1991).
  23. R. Vlokh, Y. Pyatak, and I. Skab, “Elasto-optic effect in LiNbO3 under the crystal bending,” Ferroelectrics 126, 239–242(1992). [CrossRef]
  24. R. Vlokh, M. Kostyrko, and I. Skab, “The observation of “neutral” birefringence line in LiNbO3 crystals under torsion,” Ferroelectrics 203, 113–117 (1997). [CrossRef]
  25. R. O. Vlokh, M. E. Kostyrko, and I. P. Skab, “Description for gradients of piezogyration and piezooptics produced by twisting and bending,” Crystallogr. Rep. (Transl. Kristallografiya) 42, 1011–1013 (1997).
  26. R. O. Vlokh, Y. A. Pyatak, and I. P. Skab, “Torsion-gyration effect,” Ukr. Fiz. Zhurn. 34, 845–846 (1989).
  27. K. Aizu, “Ferroelectric transformations of tensorial properties in regular ferroelectrics,” Phys. Rev. 133, A1350–A1359(1964). [CrossRef]
  28. I. Skab, Y. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010). [CrossRef]
  29. R. Vlokh, O. Krupych, M. Kostyrko, V. Netolya, and I. Trach, “Gradient thermooptical effect in LiNbO3 crystals,” Ukr. J. Phys. Opt. 2, 154–158 (2001). [CrossRef]
  30. S. Kaufmann and U. W. E. Zeitner, “Unambiguous measuring of great retardations with a modified Senarmont method,” Optik (Jena) 113, 476–480 (2002). [CrossRef]
  31. Y. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).
  32. T. A. Fadeyeva and A. V. Volyar, “Extreme spin-orbit coupling in crystal-traveling paraxial beams,” J. Opt. Soc. Am. A 27, 381–389 (2010). [CrossRef]
  33. Almaz Optics, Inc., “Lithium niobate, LiNbO3,” http://www.almazoptics.com/LiNbO3.htm.
  34. Y. Vasylkiv, V. Savaryn, I. Smaga, I. Skab, and R. Vlokh, “Determination of piezooptic coefficient π14 of LiNbO3 crystals under torsion loading,” Ukr. J. Phys. Opt. 11, 156–164 (2010). [CrossRef]
  35. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974). [CrossRef]
  36. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984). [CrossRef]
  37. A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, 1989).
  38. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A: Pure Appl. Opt. 6, 289–300 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited