OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 686–695

UV communications channel modeling incorporating multiple scattering interactions

Robert J. Drost, Terrence J. Moore, and Brian M. Sadler  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 686-695 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000686


View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In large part because of advancements in the design and fabrication of UV LEDs, photodetectors, and filters, significant research interest has recently been focused on non-line-of-sight UV communication systems. This research in, for example, system design and performance prediction, can be greatly aided by accurate channel models that allow for the reproducibility of results, thus facilitating the fair and consistent comparison of different communication approaches. In this paper, we provide a comprehensive derivation of a multiple-scattering Monte Carlo UV channel model, addressing weaknesses in previous treatments. The resulting model can be used to study the contribution of different orders of scattering to the path loss and impulse response functions associated with general UV communication system geometries. Simulation results are provided that demonstrate the benefit of this approach.

© 2011 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(290.4210) Scattering : Multiple scattering
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 22, 2010
Revised Manuscript: January 28, 2011
Manuscript Accepted: February 9, 2011
Published: March 31, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Robert J. Drost, Terrence J. Moore, and Brian M. Sadler, "UV communications channel modeling incorporating multiple scattering interactions," J. Opt. Soc. Am. A 28, 686-695 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Xu and B. M. Sadler, “Ultraviolet communications: potential and state-of-the-art,” IEEE Commun. Mag. 46, 67–73 (2008). [CrossRef]
  2. G. L. Harvey, “A survey of ultraviolet communication systems,” Tech. Rep. NRL-6037 (U. S. Naval Research Laboratory, Washington, DC 1964).
  3. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” Tech. Rep. AFCRL-68-0153 (Air Force Cambridge Research Laboratories, Bedford, MA 1968).
  4. D. E. Sunstein, “A scatter communication link at ultraviolet frequencies,” B. S. thesis (Massachusetts Institute of Technology, 1968).
  5. E. S. Fishburne, M. E. Neer, and G. Sandri, “Voice communication via scattered ultraviolet radiation,” Tech. Rep. 274 (Aeronautical Research Associates of Princeton, Inc., Princeton, NJ 1976).
  6. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995). [CrossRef] [PubMed]
  7. D. M. Reilly, “Atmospheric optical communications in the middle ultraviolet,” M. S. thesis (Massachusetts Institute of Technology, 1976).
  8. D. M. Reilly, “Temporal characteristics of single-scatter radiation,” J. Opt. Soc. Am. 69, 464–470 (1979). [CrossRef]
  9. M. R. Luettgen and J. H. Shapiro, “Non-line-of-sight single-scatter propagation model,” J. Opt. Soc. Am. A 8, 1964–1972(1991). [CrossRef]
  10. D. Kedar and S. Arnon, “Non-line-of-sight optical wireless sensor network operating in multiscattering channel,” Appl. Opt. 45, 8454–8461 (2006). [CrossRef] [PubMed]
  11. W. S. Ross and R. S. Kennedy, “An investigation of atmospheric optically scattered non-line-of-sight communication links,” Tech. Rep. ARO-15365.2-A.EL (U. S. Army Research Office, Research Triangle Park, NJ 1980).
  12. J. S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, 2001).
  13. D. M. Junge, “Non-line-of-sight electro-optic laser communications in the middle ultraviolet,” M. S. thesis (Naval Postgraduate School, Monterey, CA 1977).
  14. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27, 1535–1544(2009). [CrossRef]
  15. S. Arnon and N. S. Kopeika, “Effect of particulates on performance of optical communication in space and an adaptive method to minimize such effects,” Appl. Opt. 33, 4930–4937(1994). [CrossRef] [PubMed]
  16. D. Kedar and S. Arnon, “Optical wireless communication through fog in the presence of pointing errors,” Appl. Opt. 42, 4946–4954 (2003). [CrossRef] [PubMed]
  17. M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. A. Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). [CrossRef]
  18. V. Adivarahan, W. Fareed, S. Srivastava, T. Katona, M. Gaevski, and A. Khan, “Robust 285 nm deep UV light emitting diodes over metal organic hydride vapor phase epitaxially grown AIN/sapphire templates,” Jpn. J. Appl. Phys. 46, L537 –L579 (2007). [CrossRef]
  19. S.-C. Shen, Y. Zhang, D. Yoo, J.-B. Limb, J.-H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photonics Technol. Lett. 19, 1744–1746 (2007). [CrossRef]
  20. Q. He, B. M. Sadler, and Z. Xu, “Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications,” Proc. SPIE 7464, 74640H (2009). [CrossRef]
  21. D. Moriarty and B. Hombs, “System design of tactical communications with solar blind ultraviolet non line-of-sight systems,” in IEEE Military Communications Conference (IEEE, 2009), 1–7.
  22. G. A. Shaw, A. M. Siegel, and J. Model, “Extending the range and performance of non-line-of-sight ultraviolet communication links,” Proc. SPIE 6231, 62310C (2006). [CrossRef]
  23. G. Chen, F. Abou-Galaga, Z. Xu, and B. M. Sadler, “Experimental evaluation of LED-based solar blind NLOS communication links,” Opt. Express 16, 15059–15068 (2008). [CrossRef] [PubMed]
  24. W. Feller, “Densities in higher dimensions. Normal densities and processes,” in An Introduction to Probability Theory and its Applications (Wiley, 1966), Vol. II, pp. 65–100.
  25. A. S. Zachor, “Aureole radiance field about a source in a scattering-absorbing medium,” Appl. Opt. 17, 1911–1922 (1978). [CrossRef] [PubMed]
  26. Z. Xu, H. Ding, B. M. Sadler, and G. Chen, “Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links,” Opt. Lett. 33, 1860–1862 (2008). [CrossRef] [PubMed]
  27. J. H. Mathews, Numerical Methods for Mathematics, Science, and Engineering, 2nd ed. (Prentice Hall, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited