OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 696–703

Illuminant spectrum estimation at a pixel

Sivalogeswaran Ratnasingam and Javier Hernández-Andrés  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 696-703 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000696


View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, an algorithm is proposed to estimate the spectral power distribution of a light source at a pixel. The first step of the algorithm is forming a two-dimensional illuminant invariant chromaticity space. In estimating the illuminant spectrum, generalized inverse estimation and Wiener estimation methods were applied. The chromaticity space was divided into small grids and a weight matrix was used to estimate the illuminant spectrum illuminating the pixels that fall within a grid. The algorithm was tested using a different number of sensor responses to determine the optimum number of sensors for accurate colorimetric and spectral reproduction. To investigate the performance of the algorithm realistically, the responses were multiplied with Gaussian noise and then quantized to 10 bits . The algorithm was tested with standard and measured data. Based on the results presented, the algorithm can be used with six sensors to obtain a colorimetrically good estimate of the illuminant spectrum at a pixel.

© 2011 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.1730) Vision, color, and visual optics : Colorimetry
(150.1135) Machine vision : Algorithms
(150.6044) Machine vision : Smart cameras

ToC Category:
Machine Vision

History
Original Manuscript: February 11, 2011
Manuscript Accepted: February 12, 2011
Published: March 31, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Sivalogeswaran Ratnasingam and Javier Hernández-Andrés, "Illuminant spectrum estimation at a pixel," J. Opt. Soc. Am. A 28, 696-703 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. D. Finlayson and S. D. Hordley, “Color constancy at a pixel,” J. Opt. Soc. Am. A 18, 253–264 (2001). [CrossRef]
  2. A. Mansouri, T. Sliwa, J. Y. Hardeberg, and Y. Voisin, “An adaptive-pca algorithm for reflectance estimation from color images,” in Proceedings of the 19th IEEE International Conference on Pattern Recognition (IEEE, 2008), pp. 1–4. [CrossRef]
  3. J. Y. Hardeberg, “Acquisition and reproduction of color images: colorimetric and multispectral approaches,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications, 1999).
  4. F. H. Imai and R. S. Berns, “Spectral estimation using trichromatic digital cameras,” in Proceedings of the International Symposium on Multispectral Imaging and Color Reproduction, (Society of Multispectral Imaging of Japan, 1999), pp. 42–49.
  5. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621–6632(2000). [CrossRef]
  6. S. Ratnasingam, S. Collins, and J. Hernández-Andrés, “Extending “color constancy” outside the visible region,” J. Opt. Soc. Am. A 28, 541–547 (2011). [CrossRef]
  7. W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of a color image scanner,” Appl. Opt. 15, 73–75 (1976). [CrossRef] [PubMed]
  8. N. Shimano, “Optimization of spectral sensitivities with Gaussian distribution functions for a color image acquisition device in the presence of noise,” Opt. Eng. 45, 013201 (2006). [CrossRef]
  9. J. Romero, A. García-Beltrán, and J. Hernández-Andrés, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997). [CrossRef]
  10. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with a small number of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef] [PubMed]
  11. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef] [PubMed]
  12. M. J. Vhrel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9(1994).
  13. T. Harifi, S. H. Amirshahi, and F. Agahian., “Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique,” Opt. Rev. 15, 302–308(2008). [CrossRef]
  14. M. Shi and G. Healey, “Using reflectance models for color scanner calibration,” J. Opt. Soc. Am. A 19, 645–656 (2002). [CrossRef]
  15. J. M. Dicarlo and B. A. Wandell, “Spectral estimation theory: beyond linear but before Bayesian,” J. Opt. Soc. Am. A 20, 1261–1270 (2003). [CrossRef]
  16. S. Ratnasingam and S. Collins, “Study of the photodetector characteristics of a camera for color constancy in natural scenes,” J. Opt. Soc. Am. A 27, 286–294 (2010). [CrossRef]
  17. J. A. Marchant and C. M. Onyango, “Shadow-invariant classification for scenes illuminated by daylight,” J. Opt. Soc. Am. A 17, 1952–1961 (2000). [CrossRef]
  18. S. Ratnasingam, S. Collins, and J. Hernández-Andrés, “Optimum sensors for color constancy in scenes illuminated by daylight,” J. Opt. Soc. Am. A 27, 2198–2207 (2010). [CrossRef]
  19. Munsell Color Science Laboratory, “Daylight spectra,” http://www.cis.rit.edu/mcsl/
  20. “Munnsell Colors Matt database,” ftp://ftp. cs. joensuu. fi/pub/color/spectra/mspec/.
  21. J. Hernández-Andrés, J. Romero, J. L. Nieves, and R. L. Lee, Jr., “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001). [CrossRef]
  22. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. A 54, 1031–1040 (1964). [CrossRef]
  23. M. A. López-Álvarez, J. Hernández-Andrés, E. M. Valero, and J. Romero, “Selecting algorithms, sensors and linear bases for optimum spectral recovery of skylight,” J. Opt. Soc. Am. A 24, 942–956 (2007). [CrossRef]
  24. S. E. J. Arnold, V. Savolainen, and L. Chittka, “FReD: the floral reflectance spectra database,” Nature Precedings (2008). http://dx.doi.org/10.1038/npre.2008.1846.1. [CrossRef]
  25. J. Hernández-Andrés, J. Romero, and R. L. Lee, Jr., “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain,” J. Opt. Soc. Am. A 18, 412–420(2001). [CrossRef]
  26. M. Ebner, Color Constancy (Wiley, 2007).
  27. A. Abrardo, V. Cappellini, M. Cappellini, and A. Mecocci. “Art-works color calibration using the VASARI scanner,” in Fourth Color Imaging Conference: Color Science, Systems, and Applications 4 (The Society for Imaging Science and Technology, 1996), pp. 94–97.
  28. G. Sharma and H. J. Trussell, “Digital color imaging,” IEEE Trans. Image Process. 6, 901–932 (1997). [CrossRef] [PubMed]
  29. S. Winkler and S. Susstrunk, “Visibility of noise in natural images,” Proc. SPIE 5292, 121–129 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited