OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 4 — Apr. 1, 2011
  • pp: 713–723

Biologically inspired framework for spatial and spectral velocity estimations

Xuefeng Liang, Peter W. McOwan, and Alan Johnston  »View Author Affiliations


JOSA A, Vol. 28, Issue 4, pp. 713-723 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000713


View Full Text Article

Enhanced HTML    Acrobat PDF (942 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multichannel gradient model (McGM) is an established, biologically plausible framework for the robust extraction of image velocity. Here we describe the McGM extension into color space and report the resulting performance improvement. Our new model, in contrast to existing approaches that process color channels separately, incorporates spectral energy measures to form a local description of the stimulus chromatic spatio-temporal structure from which we can recover both spatial and spectral velocities. We present a range of comparative experiments on synthetic and natural test data that demonstrate that our new method reduces errors and is more robust over a range of viewing environments.

© 2011 Optical Society of America

OCIS Codes
(330.4150) Vision, color, and visual optics : Motion detection
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 17, 2010
Revised Manuscript: January 27, 2011
Manuscript Accepted: February 3, 2011
Published: March 31, 2011

Virtual Issues
Vol. 6, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Xuefeng Liang, Peter W. McOwan, and Alan Johnston, "Biologically inspired framework for spatial and spectral velocity estimations," J. Opt. Soc. Am. A 28, 713-723 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-4-713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Brandt and W. Jonathan, “Improved accuracy in gradient-based optical flow estimation,” Int. J. Comput. Vis. 25, 5–22(1997). [CrossRef]
  2. P. C. Chung, C. L. Huang, and E. L. Chen, “A region-based selective optical flow back-projection for genuine motion vector estimation,” Pattern Recognit. 40, 1066–1077 (2007). [CrossRef]
  3. E. D. Castro and C. Morandi, “Registration of translated and rotated images using finite Fourier transforms,” IEEE Trans. Pattern Anal. Machine Intell. PAMI-9, 700–703 (1987). [CrossRef]
  4. D. Kalivas and A. Sawchuk, “A region matching motion estimation algorithm,” in Comput. Vision Graphics Image Process. Image Underst. 54, 275–288 (1991). [CrossRef]
  5. H. Liu, R. Chellappa, and A. Rosenfeld, “Fast two-frame multiscale dense optical flow estimation using discrete wavelet filters,” J. Opt. Soc. Am. A 20, 1505–1515 (2003). [CrossRef]
  6. T. Amiaz, E. Lubetzky, and N. Kiryati, “Coarse to over-fine optical flow estimation,” Pattern Recognit. 40, 2496–2503 (2007). [CrossRef]
  7. B. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” in IJCAI'81 Proceedings of the 7th International Joint Conference on Artificial Intelligence (Morgan Kaufmann, 1981), Vol.  2, pp. 674–679.
  8. B. Horn and B. Schunck, “Determining optical flow,” Artif. Intell. 17, 185–203 (1981). [CrossRef]
  9. N. Ohta, “Optical flow detection by color images,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 1989), Vol.  4, pp. 801–805.
  10. N. Ohta and S. Nishizawa, “How much does color information help optical flow computation,” IEICE Trans. Inf. Syst. E89-D, 1759–1762 (2006). [CrossRef]
  11. J. Barron and R. Klette, “Quantitative color optical flow,” in Proceedings of IEEE International Conference on Pattern Recognition (IEEE, 2002), Vol.  4, pp. 251–255.
  12. K. Aires, A. Santana, and A. Medeiros, “Optical flow using color information: preliminary results,” in Proceedings of the 2008 ACM Symposium on Applied Computing (ACM, 2008), pp. 1607–1611. [CrossRef]
  13. R. Andrews and B. Lovell, “Color optical flow,” in Proceedings of Workshop on Digital Image Computing (2003), pp. 135–139.
  14. P. Golland and A. Bruckstein, “Motion from color,” Comput. Vision Image Underst. 68, 346–362 (1997). [CrossRef]
  15. Y. Mileva, A. Bruhn, and J. Weickert, “Illumination-robust variational optical flow with photometric invariants,” in Proceedings of the 29th DAGM Conference on Pattern Recognition (Springer-Verlag, 2007), pp. 152–162.
  16. T. Zickler, S. Mallick, D. Kriegman, and P. Belhumeur, “Color subspaces as photometric invariants,” Int. J. Comput. Vis. 79, 13–30 (2008). [CrossRef]
  17. A. Johnston and C. Clifford, “A unified account of three apparent motion illusions,” Vision Res. 35, 1109–1123 (1995). [CrossRef] [PubMed]
  18. A. Johnston, P. W. McOwan, and C. P. Benton, “Robust velocity computation from a biologically motivated model of motion perception,” Proc. R. Soc. London Series B 266, 509–518(1999). [CrossRef]
  19. B. A. Wandell, in Foundations of Vision (Sinauer, 1995), Chap. 9.
  20. E. Hering, Outlines of a Theory of the Light Sense (Harvard University, 1964).
  21. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psych. Rev. 64, 384–404 (1957). [CrossRef]
  22. D. Jameson and L. M. Hurvich, “Some quantitative aspects of an opponent-colors theory. i. chromatic responses and spectral saturation,” J. Opt. Soc. Am. 45, 546–552 (1955). [CrossRef]
  23. J. B. Derrico and G. Buchsbaum, “A computational model of spatiochromatic image coding in early vision,” J. Visual Commun. Image Represent 2), 31–38 (1991). [CrossRef]
  24. A. B. Poirson and B. A. Wandell, “The appearance of colored patterns: pattern-color separability,” J. Opt. Soc. Am. A 10, 2458–2470 (1993). [CrossRef]
  25. M. D. Fairchild, in Color Appearance Models, 2nd ed. (Wiley, 2005), Chap. 8.
  26. J. Koenderink and A. Kappers, Color Space (Utrecht University, 1998).
  27. J.-M. Geusebroek, R. Boomgaard, A. W. Smeulders, and H. Geerts, “Color invariance,” IEEE Trans. Pattern Anal. Machine Intell. 23, 1338–1350 (2001). [CrossRef]
  28. A. Johnston, P. W. McOwan, and H. Buxton, “A computational model of the analysis of first and second order motion by simple and complex cells,” Proc. R. Soc. London Series B 250, 297–306 (1992). [CrossRef]
  29. P. W. McOwan, C. Benton, J. Dale, and A. Johnston, “A multi-differential neuromorphic approach to motion detection,” Int. J. Neural Syst. 9, 429–434 (1999). [CrossRef]
  30. A. Johnston, P. W. McOwan, and C. Benton, “Biological computation of image motion from flows over boundaries,” J. Phys. 97, 325–334 (2003). [CrossRef]
  31. S. Baker and I. Matthews, “Lucas-Kandade 20 years on: a unifying framework,” Int. J. Comput. Vis. 56, 221–255(2004). [CrossRef]
  32. A. Johnston, C. Benton, and P. W. McOwan, “Induced motion at texture-defined motion boundaries,” Proc. R. Soc. London Series B 266, 2441–2450 (1999). [CrossRef]
  33. T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation based on a theory for warping,” in Proceedings of European Conference on Computer Vision (Springer, 2004), Vol.  4, pp. 25–36.
  34. J. Koenderink and A. van Doorn, “Receptive field assembly pattern specificity,” J. Visual Commun. Image Represent. 3, 1–12(1992). [CrossRef]
  35. J.-M. Geusebroek, R. Boomgaard, A. W. Smeulders, and T. Gevers, “Color constancy from physical principles,” Pattern Recognit. Lett. 24, 1653–1662 (2003). [CrossRef]
  36. S. Lang, Calculus of Several Variables (Springer-Verlag, 1987). [CrossRef]
  37. J. Schanda, in Colorimetry: Understanding the CIE System(Wiley, 2007), Chap. 3.
  38. “HSV Color Space,” http://en.wikipedia.org/wiki/HSL_and_HSV#cite_note12.
  39. O. J. Braddick, “Segmentation versus integration in visual motion processing,” Trends Neurosci. 16, 263–268 (1993). [CrossRef] [PubMed]
  40. G. Botella, M. Rodriguez, A. Garcia, and E. Ros, “Neuromorphic configurable architecture for robust motion estimation,” Int. J. Reconfigurable Comput. 2008, 384–404 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited