OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 770–777

Minimizing light reflection from dielectric textured surfaces

Alexei Deinega, Ilya Valuev, Boris Potapkin, and Yurii Lozovik  »View Author Affiliations

JOSA A, Vol. 28, Issue 5, pp. 770-777 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we consider antireflective properties of textured surfaces for all texture size-to-wavelength ratios. Existence and location of the global reflection minimum with respect to geometrical parameters of the texture is a subject of our study. We also investigate asymptotic behavior of the reflection with the change of the texture geometry for the long and short wavelength limits. As a particular example, we consider silicon-textured surfaces used in solar cells technology. Most of our results are obtained with the help of the finite-difference time-domain (FDTD) method. We also use effective medium theory and geometric optics approximation for the limiting cases. The FDTD results for these limits are in agreement with the corresponding approximations.

© 2011 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(310.1210) Thin films : Antireflection coatings

ToC Category:
Thin Films

Original Manuscript: January 4, 2011
Revised Manuscript: February 11, 2011
Manuscript Accepted: February 15, 2011
Published: April 12, 2011

Alexei Deinega, Ilya Valuev, Boris Potapkin, and Yurii Lozovik, "Minimizing light reflection from dielectric textured surfaces," J. Opt. Soc. Am. A 28, 770-777 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  2. H. A. Macleod, Thin Film Optical Filter (McGraw-Hill, 1989).
  3. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999). [CrossRef]
  4. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  5. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973). [CrossRef]
  6. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength anti-reflection structures on Si using trilayer resist nanoimprint lithography and lift-off,” J. Vac. Sci. Technol. B 21, 2874–2877 (2003). [CrossRef]
  7. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007). [CrossRef]
  8. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15, 14793–14803 (2007). [CrossRef] [PubMed]
  9. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett. 34, 1702–1704(2009). [CrossRef] [PubMed]
  10. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991). [CrossRef]
  11. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32, 2582–2598 (1993). [CrossRef] [PubMed]
  12. B. L. Sopori and R. A. Pryor, “Design of antireflection coatings for textured silicon solar cells,” Sol. Cells 8, 249–261 (1983). [CrossRef]
  13. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  14. A. A. Abouelsaood, S. A. El-Naggar, and M. Y. Ghannam, “Shape and size dependence of the anti-reflective and light-trapping action of periodic grooves,” Prog. Photovolt. Res. Appl. 10, 513–526 (2002). [CrossRef]
  15. F. Llopis and I. Tobias, “Texture profile and aspect ratio influence on the front reflectance of solar cells,” J. Appl. Phys. 100, 124504 (2006). [CrossRef]
  16. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett. 35, 106–108 (2010). [CrossRef] [PubMed]
  17. A. Taflove and S. H. Hagness, Computational Electrodynamics: the Finite Difference Time-Domain Method (Artech House, 2005).
  18. A. Deinega and I. Valuev, “Long-time behavior of PML absorbing boundaries for layered periodic structures,” Comput. Phys. Commun. 182, 149–151 (2011). [CrossRef]
  19. Electromagnetic Template Library, http://fdtd. kintechlab. com.
  20. T. C. Choy, Effective Medium Theory: Principles and Applications (Clarendon, 1999).
  21. F. Wu and K. W. Whites, “Computation of static effective permittivity for a multiphase lattice of cylinders,” Electromagnetics 21, 97–114 (2001). [CrossRef]
  22. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33, 7875–7882 (1994). [CrossRef] [PubMed]
  23. G. Franceschetti, “Scattering from plane layered media,” IEEE Trans. Antennas Propag. 12, 754–763 (1964). [CrossRef]
  24. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]
  25. A. Deinega and I. Valuev, “Subpixel smoothing for conductive and dispersive media in the FDTD method,” Opt. Lett. 32, 3429–3431 (2007). [CrossRef] [PubMed]
  26. O. Bucci and G. Franceschetti, “Scattering from wedge-tapered absorbers,” IEEE Trans. Antennas Propag. 19, 96–104 (1971). [CrossRef]
  27. M. A. Green and M. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovoltaics 3, 189–192(1995). [CrossRef]
  28. I. Valuev, A. Deinega, and S. Belousov, “Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method,” Opt. Lett. 33, 1491–1493(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited