OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 897–902

Ambiguity function and phase-space tomography for nonparaxial fields

Seongkeun Cho and Miguel A. Alonso  »View Author Affiliations

JOSA A, Vol. 28, Issue 5, pp. 897-902 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nonparaxial generalization of the ambiguity function that retains several properties of its paraxial counterpart is presented, in both two and three dimensions. This generalization is used to extend into the nonparaxial regime a scheme for the recovery of the coherence properties of scalar partially coherent fields in two-dimensional space.

© 2011 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(050.5082) Diffraction and gratings : Phase space in wave options
(070.7425) Fourier optics and signal processing : Quasi-probability distribution functions

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 20, 2011
Manuscript Accepted: February 24, 2011
Published: April 25, 2011

Seongkeun Cho and Miguel A. Alonso, "Ambiguity function and phase-space tomography for nonparaxial fields," J. Opt. Soc. Am. A 28, 897-902 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Woodward, “The transmitted radar signal,” in Probability and Information Theory with Application to Radar(Pergamon, 1953), pp. 115–125.
  2. A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974). [CrossRef]
  3. H. Hopkins, “The frequency response of a defocused optical system,” Proc. R. Soc. London A 231, 91–103 (1955). [CrossRef]
  4. J.-P. Guigay, “Ambiguity function in diffraction and isoplanatic imaging by partially coherent beams,” Opt. Commun. 26, 136–138 (1978). [CrossRef]
  5. K.-H. Brenner, A. W. Lohmann, and J. Ojeda-Castaneda, “Ambiguity function as a polar display of the OTF,” Opt. Commun. 44, 323–326 (1983). [CrossRef]
  6. K. Nugent, “Wave field determination using three-dimensional intensity information,” Phys. Rev. Lett. 68, 2261–2264 (1992). [CrossRef] [PubMed]
  7. K. Nugent, “X-ray noninterferometric phase imaging: a unified picture,” J. Opt. Soc. Am. A 24, 536–547 (2007). [CrossRef]
  8. M. Raymer, M. Beck, and D. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994). [CrossRef] [PubMed]
  9. D. McAlister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183(1995). [CrossRef] [PubMed]
  10. A. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  11. C. Tran, A. Peele, A. Roberts, K. Nugent, D. Paterson, and I. McNulty, “X-ray imaging: a generalized approach using phase-space tomography,” J. Opt. Soc. Am. A 22, 1691–1700(2005). [CrossRef]
  12. C. Tran, A. Mancuso, B. Dhal, and K. Nugent, “Phase-space reconstruction of focused x-ray fields,” J. Opt. Soc. Am. A 23, 1779–1786 (2006). [CrossRef]
  13. A. Camara, T. Alieva, J. Rodrigo, and M. L. Calvo, “Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates,” J. Opt. Soc. Am. A 26, 1301–1306 (2009). [CrossRef]
  14. K. Vogel and H. Risken, “Determination of quasi-probability distributions in terms of probability distributions for the quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989). [CrossRef] [PubMed]
  15. J. Tu and S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949(1997). [CrossRef]
  16. J. Tu and S. Tamura, “Analytic relation for recovering the mutual intensity by means of intensity information,” J. Opt. Soc. Am. A 15, 202–206 (1998). [CrossRef]
  17. M. A. Alonso, “Radiometry and wide-angle wave fields: I. Coherent fields in two dimensions,” J. Opt. Soc. Am. A 18, 902–909 (2001). [CrossRef]
  18. M. A. Alonso, “Radiometry and wide-angle wave fields: II. Coherent fields in three dimensions,” J. Opt. Soc. Am. A 18, 910–918 (2001). [CrossRef]
  19. M. A. Alonso, “Radiometry and wide-angle wave fields: III. Partial coherence,” J. Opt. Soc. Am. A 18, 2502–2511 (2001). [CrossRef]
  20. K. B. Wolf, M. A. Alonso, and G. W. Forbes, “Wigner functions for Helmholtz wave fields,” J. Opt. Soc. Am. A 16, 2476–2487(1999). [CrossRef]
  21. M. A. Alonso, “Exact description of free electromagnetic wave fields in terms of rays,” Opt. Express 11, 3128–3135 (2003). [CrossRef] [PubMed]
  22. M. A. Alonso, “Wigner functions for nonparaxial, arbitrarily polarized, electromagnetic wave fields in free space,” J. Opt. Soc. Am. 21, 2233–2243 (2004). [CrossRef]
  23. R. Gerchberg and W. Saxton, “A practical algorithm for the determination of phase from image and diffraction phase pictures,” Optik 35, 237–246 (1972).
  24. J. Fienup, “Phase-retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  25. J. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  26. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 276 –287.
  27. C. J. R. Sheppard and K. G. Larkin, “Wigner function and ambiguity function for nonparaxial wavefields,” in Optical Information Processing: A Tribute to Adolf Lohmann, H.Caulfield, ed. (SPIE Press, 2002), pp. 37–56.
  28. K. G. Larkin and C. J. R. Sheppard, “Direct method for phase retrieval from the intensity of cylindrical wave fronts,” J. Opt. Soc. Am. A 16, 1838–1844 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited