OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 5 — May. 1, 2011
  • pp: 924–933

In-phase supermode selection in ring-type and concentric-type multicore fibers using large-mode-area single-mode fiber

Xiaolei Zhang, Xingyu Zhang, Qingpu Wang, Jun Chang, and Gang-Ding Peng  »View Author Affiliations


JOSA A, Vol. 28, Issue 5, pp. 924-933 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000924


View Full Text Article

Enhanced HTML    Acrobat PDF (2419 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an all-fiber-optic supermode selection scheme based on large-mode-area single-mode fiber for multicore fiber (MCF). The supermode selection in terms of the coupling coefficient is investigated and compared for various ring-type and concentric-type MCFs. The in-phase supermode is found to have a significantly higher coupling coefficient than other supermodes—demonstrating significant and desirable supermode selection characteristics. This scheme has shown better in-phase supermode selection performance than the conventional free-space Talbot cavity. It is found to be effective in selecting the in-phase supermode for both ring-type and concentric-type MCFs and promising for all-fiber MCF lasers with high power output and good beam quality.

© 2011 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3298) Lasers and laser optics : Laser beam combining

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 22, 2010
Revised Manuscript: March 4, 2011
Manuscript Accepted: March 5, 2011
Published: April 29, 2011

Citation
Xiaolei Zhang, Xingyu Zhang, Qingpu Wang, Jun Chang, and Gang-Ding Peng, "In-phase supermode selection in ring-type and concentric-type multicore fibers using large-mode-area single-mode fiber," J. Opt. Soc. Am. A 28, 924-933 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-5-924


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004). [CrossRef] [PubMed]
  2. V. Gapontsev, D. Platonov, N. Shkurikhin, O. Fomin, V. Mashkin, A. Abramov, and M. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in CLEO/Europe, 2005 Conference on Lasers and Electro-Optics (IEEE, 2005), p. 508. [CrossRef]
  3. P. K. Cheo, A. Liu, and G. G. King, “A high-brightness laser beam from a phase-locked multicore Yb-doped laser array,” IEEE Photon. Technol. Lett. 13, 439–441 (2001). [CrossRef]
  4. E. J. Bochove, P. K. Cheo, and G. G. King, “Self-organization in a multicore fiber laser array,” Opt. Lett. 28, 1200–1202 (2003). [CrossRef] [PubMed]
  5. Y. Huo, P. K. Cheo, and G. G. King, “Fundamental mode operation of a 19-core phase locked Yb-doped fiber amplifier,” Opt. Express 12, 6230–6239 (2004). [CrossRef] [PubMed]
  6. L. Michaille, C. R. Bennett, D. M. Taylor, and T. J. Shepherd, “Multicore photonic crystal fiber lasers for high power/energy applications,” IEEE Select. Top. Quantum. Electron. 15, 328–335 (2009). [CrossRef]
  7. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-locked multicore all-fiber lasers: modeling and experimental investigation,” J. Opt. Soc. Am. B 24, 1721–1728 (2007). [CrossRef]
  8. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett. 30, 2906–2908 (2005). [CrossRef] [PubMed]
  9. Y. Huo and P. K. Cheo, “Analysis of transverse mode competition and selection in multicore fiber lasers,” J. Opt. Soc. Am. B 22, 2345–2349 (2005). [CrossRef]
  10. A. Mafi and J. V. Moloney, “Phase locking in a passive multicore photonic crystal fiber,” J. Opt. Soc. Am. B 21, 897–902(2004). [CrossRef]
  11. A. Mafi and J. V. Moloney, “Shaping modes in multicore photonic crystal fibers,” IEEE Photon. Technol. Lett. 17, 348–350(2005). [CrossRef]
  12. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett. 25, 1436–1438(2000). [CrossRef]
  13. L. Li, A. Schülzgen, S. Chen, and V. L. Temyanko, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett. 31, 2577–2579 (2006). [CrossRef] [PubMed]
  14. C. Wang, F. Zhang, and S. Jian, “Microstructured optical fiber for in-phase mode selection in multicore fiber lasers,” Opt. Express 16, 5505–5515 (2008). [CrossRef]
  15. M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett. 26, 980–982 (2001). [CrossRef]
  16. E. J. Bochovel and C. J. Corcoran, “In-phase supermode selection in a multicore fiber laser array by means of a self-Fourier external cavity,” Appl. Opt. 46, 5009–5018 (2007). [CrossRef]
  17. S. Wielandy, “Implications of high-order mode content in large mode area fibers with good beam quality,” Opt. Express 15, 15402–15409 (2007). [CrossRef] [PubMed]
  18. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. V. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16, 13651–13656(2008). [CrossRef] [PubMed]
  19. L. Fu, H. A. McKay, and L. Dong, “Extremely large mode area optical fibers formed by thermal stress,” Opt. Express 17, 11782–11793 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited