OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1032–1040

High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction

Richard V. Craster, Julius Kaplunov, Evgeniya Nolde, and Sebastien Guenneau  »View Author Affiliations

JOSA A, Vol. 28, Issue 6, pp. 1032-1040 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The counterintuitive properties of photonic crystals, such as all-angle negative refraction (AANR) [ J. Mod. Opt. 34, 1589 (1987)] and high-directivity via ultrarefraction [ Phys. Rev. Lett. 89, 213902 (2002)], as well as localized defect modes, are known to be associated with anomalous dispersion near the edge of stop bands. We explore the implications of an asymptotic approach to uncover the underlying structure behind these phenomena. Conventional homogenization is widely assumed to be ineffective for modeling photonic crystals as it is limited to low frequencies when the wavelength is long relative to the microstructural length scales. Here a recently developed high-frequency homogenization (HFH) theory [ Proc. R. Soc. Lond. A 466, 2341 (2010)] is used to generate effective partial differential equations on a macroscale, which have the microscale embedded within them through averaged quantities, for checkerboard media. For physical applications, ultrarefraction is well described by an equivalent homogeneous medium with an effective refractive index given by the HFH procedure, the decay behavior of localized defect modes is characterized completely, and frequencies at which AANR occurs are all determined analytically. We illustrate our findings numerically with a finite-size checkerboard using finite elements, and we emphasize that conventional effective medium theory cannot handle such high frequencies. Finally, we look at light confinement effects in finite-size checkerboards behaving as open resonators when the condition for AANR is met [ J. Phys. Condens. Matter 15, 6345 (2003)].

© 2011 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.2065) Diffraction and gratings : Effective medium theory
(160.3918) Materials : Metamaterials
(160.5293) Materials : Photonic bandgap materials
(050.5298) Diffraction and gratings : Photonic crystals
(050.5745) Diffraction and gratings : Resonance domain

ToC Category:
Physical Optics

Original Manuscript: October 28, 2010
Revised Manuscript: March 23, 2011
Manuscript Accepted: March 26, 2011
Published: May 17, 2011

Richard V. Craster, Julius Kaplunov, Evgeniya Nolde, and Sebastien Guenneau, "High-frequency homogenization for checkerboard structures: defect modes, ultrarefraction, and all-angle negative refraction," J. Opt. Soc. Am. A 28, 1032-1040 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, V. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187(2000). [CrossRef] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987). [CrossRef] [PubMed]
  5. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  6. R. Zengerle, “Light propagation in singly and doubly periodic waveguides,” J. Mod. Opt. 34, 1589–1617 (1987). [CrossRef]
  7. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020(2000). [CrossRef]
  8. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behaviour in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  9. J. Pendry and A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15, 6345–6364 (2003). [CrossRef]
  10. S. Guenneau and S. A. Ramakrishna, “Negative refractive index, perfect lenses and checkerboards: trapping and imaging effects in folded optical spaces,” C. R. Phys. 10, 352–378 (2009). [CrossRef]
  11. M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002). [CrossRef]
  12. J. B. Pendry, “Negative refraction,” Contemp. Phys. 45, 191–202 (2004). [CrossRef]
  13. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005). [CrossRef]
  14. E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory (Springer-Verlag, 1980).
  15. N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media (Kluwer, Amsterdam, 1989). [CrossRef]
  16. G. Panasenko, Multi-Scale Modelling for Structures and Composites (Springer, 2005).
  17. G. W. Milton, The Theory of Composites (Cambridge University Press, 2002). [CrossRef]
  18. K. D. Cherednichenko, V. P. Smyshlyaev, and V. V. Zhikov, “Non-local homogenised limits for composite media with highly anisotropic periodic fibres,” Proc. R. Soc. Edinburgh 136 A, 87–114 (2006). [CrossRef]
  19. C. Conca, J. Planchard, and M. Vanninathan, Fluids and Periodic Structures (Masson, 1995).
  20. K. D. Cherednichenko and S. Guenneau, “Bloch wave homogenisation for spectral asymptotic analysis of the periodic Maxwell operator,” Waves Random Complex Media 17, 627–651 (2007). [CrossRef]
  21. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1996).
  22. L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2nd ed. (Dover, 1953).
  23. R. L. Kronig and W. G. Penney, “Quantum mechanics in crystals lattices,” Proc. R. Soc. London A 130, 499–531 (1931). [CrossRef]
  24. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981). [CrossRef]
  25. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907–2916(1982). [CrossRef]
  26. T. J. Shepherd, P. J. Roberts, and R. Loudon, “Soluble two-dimensional photonic-crystal model,” Phys. Rev. E 55, 6024–6038 (1997). [CrossRef]
  27. A. B. Movchan, N. V. Movchan, and R. C. McPhedran, “Bloch–Floquet bending waves in perforated thin plates,” Proc. R. Soc. London A 463, 2505–2518 (2007). [CrossRef]
  28. J. M. Harrison, P. Kuchment, A. Sobolev, and B. Winn, “On occurrence of spectral edges for periodic operators inside the Brillouin zone,” J. Phys. A: Math. Theor. 40, 7597–7618 (2007). [CrossRef]
  29. S. D. M. Adams, R. V. Craster, and S. Guenneau, “Guided and standing Bloch waves in periodic elastic strips,” Waves Random Complex Media 19, 321–346 (2009). [CrossRef]
  30. A. Figotin and I. Vitebskiy, “Slow light in photonic crystals,” Waves Random Complex Media 16, 293–392 (2006). [CrossRef]
  31. R. V. Craster, J. Kaplunov, and A. V. Pichugin, “High frequency homogenization for periodic media,” Proc. R. Soc. London A 466, 2341–2362 (2010). [CrossRef]
  32. R. V. Craster, J. Kaplunov, and J. Postnova, “High frequency asymptotics, homogenization and localization for lattices,” Q. J. Mech. Appl. Math. 63, 497–519 (2010). [CrossRef]
  33. E. Nolde, R. V. Craster, and J. Kaplunov, “High frequency homogenization for structural mechanics,” J. Mech. Phys. Solids 59, 651–671 (2011). [CrossRef]
  34. J. B. Keller, “A theorem on the conductivity of a composite medium,” J. Math. Phys. 5, 548–549 (1964). [CrossRef]
  35. F. Zolla and S. Guenneau, “Duality relation for the Maxwell system,” Phys. Rev. E 67, 026610 (2003). [CrossRef]
  36. V. V. Zhikov, “Estimates for the trace of the averaged matrix,” Math. Notes Acad. Sci. USSR 40, 628–634 (1986). [CrossRef]
  37. R. V. Craster and Y. V. Obnosov, “Four phase checkerboard composites,” SIAM J. Appl. Math. 61, 1839–1856 (2001). [CrossRef]
  38. G. W. Milton, “Proof of a conjecture on the conductivity of checkerboards,” J. Math. Phys. 42, 4873–4882 (2001). [CrossRef]
  39. Y. Capdeboscq and M. Briane, “Expansion formulae for the homogenized determinant of anisotropic checkerboards,” Proc. R. Soc. London A 462, 2259–2279 (2006). [CrossRef]
  40. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964).
  41. K. B. Dossou, L. C. Botten, R. C. McPhedran, C. G. Poulton, A. A. Asatryan, and C. Martijn de Sterke, “Shallow defect states in two-dimensional photonic crystals,” Phys. Rev. A 77, 063839 (2008). [CrossRef]
  42. J. P. Dowling and C. M. Bowden, “Anomalous index of refraction in photonic bandgap materials,” J. Mod. Opt. 41, 345–351(1994). [CrossRef]
  43. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  44. A. Alù, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007). [CrossRef]
  45. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684(2002). [PubMed]
  46. R. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 046608 (2004). [CrossRef]
  47. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am. 69, 742–756 (1979). [CrossRef]
  48. C. Luo, S. G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  49. S. Guenneau, S. A. Ramakrishna, S. Enoch, S. Chakrabarti, G. Tayeb, and B. Gralak, “Cloaking and imaging effects in plasmonic checkerboards of negative epsilon and mu and dielectric photonic crystal checkerboards,” Photon. Nanostruct. Fund. Appl. 5, 63–72 (2007). [CrossRef]
  50. G. W. Milton and N. A. Nicorovici, “On the cloaking effects associated with anomalous localised resonance,” Proc. R. Soc. London A 462, 3027–3059 (2006). [CrossRef]
  51. M. Farhat, S. Guenneau, S. Enoch, G. Tayeb, A. Movchan, and N. Movchan, “Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of close to touching rigid square cylinders,” Phys. Rev. E 77, 046308(2008). [CrossRef]
  52. M. Farhat, S. Guenneau, S. Enoch, A. Movchan, and G. Petursson, “Focussing bending waves via negative refraction in perforated thin plates,” Appl. Phys. Lett. 96, 081909 (2010). [CrossRef]
  53. M. Farhat, S. Guenneau, and S. Enoch, “High-directivity and confinement of flexural waves through ultrarefraction in thin perforated plates,” Euro. Phys. Lett. 91, 54003 (2010). [CrossRef]
  54. X. Hu, Y. Shu, X. Liu, R. Fu, and J. Zi, “Superlensing effect in liquid surface waves,” Phys. Rev. E 69, 030201 (2004). [CrossRef]
  55. M. Farhat, S. Guenneau, S. Enoch, and A. Movchan, “All-angle negative refraction and ultra-refraction for liquid surface waves in 2-D phononic crystals,” J. Comput. Appl. Math. 234, 2011–2019 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited