OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1191–1196

Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction

Yumao Wu and Ya Yan Lu  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1191-1196 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001191


View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Boundary integral equation methods for diffraction gratings are particularly suitable for gratings with complicated material interfaces but are difficult to implement due to the quasi-periodic Green’s function and the singular integrals at the corners. In this paper, the boundary integral equation Neumann-to-Dirichlet map method for in-plane diffraction problems of gratings [Y. Wu and Y. Y. Lu, J. Opt. Soc. Am. A 26, 2444 (2009)] is extended to conical diffraction problems. The method uses boundary integral equations to calculate the so-called Neumann-to-Dirichlet maps for homogeneous subdomains of the grating, so that the quasi-periodic Green’s functions can be avoided. Since wave field components are coupled on material interfaces with the involvement of tangential derivatives, a least squares polynomial approximation technique is developed to evaluate tangential derivatives along these interfaces for conical diffraction problems. Numerical examples indicate that the method performs equally well for dielectric or metallic gratings.

© 2011 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 8, 2011
Revised Manuscript: April 12, 2011
Manuscript Accepted: April 14, 2011
Published: May 23, 2011

Citation
Yumao Wu and Ya Yan Lu, "Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction," J. Opt. Soc. Am. A 28, 1191-1196 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R.Petit, ed., Electromagnetic Theory of Gratings (Speinger-Verlag, 1980). [CrossRef]
  2. G.Bao, L.Cowsar, and W.Masters, eds., Mathematical Modeling in Optical Sciences (Society for Industrial and Applied Mathematics, 2001). [CrossRef]
  3. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel Dekker, 2003).
  4. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef]
  5. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  6. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  7. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  8. D. Maystre, “Sur la diffraction et l’absorption par les réseaux utilisés dans l’infrarouge, le visible, et l’ultraviolet,” (Ph.D. dissertation, Université d’Aix-Marseille III, France, 1974).
  9. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer-Verlag, 1980), Chapter 3.
  10. A. Pomp, “Integral method for coated gratings—computational cost,” J. Mod. Opt. 38, 109–120 (1991). [CrossRef]
  11. B. H. Kleemann, A. Mitreiter, and F. Wyrowski, “Integral equation method with parametrization of grating profile—theory and experiments,” J. Mod. Opt. 43, 1323–1349 (1996). [CrossRef]
  12. D. W. Prather, M. S. Mirotznik, and J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997). [CrossRef]
  13. E. Popov, B. Bozhkov, D. Maystre, and J. Hoose, “Integral method for echelles covered with lossless or absorbing thin dielectric layers,” Appl. Opt. 38, 47–55 (1999). [CrossRef]
  14. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418(2005). [CrossRef]
  15. A. Rathsfeld, G. Schmidt, and B. H. Kleemann, “Fast integral equation method for diffraction gratings,” CiCP 1, 984–1009(2006).
  16. L. I. Goray and G. Schmidt, “Solving conical diffraction with integral equations,” J. Opt. Soc. Am. A 27, 585–597(2010). [CrossRef]
  17. E. Popov, M. Nevière, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33–42 (2002). [CrossRef]
  18. I. Gushchin and A. V. Tishchenko, “Fourier modal method for relief gratings with oblique boundary conditions,” J. Opt. Soc. Am. A 27, 1575–1583 (2010). [CrossRef]
  19. N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, “Modal analysis and suppression of the Fourier modal method instabilities in highly conductive gratings,” J. Opt. Soc. Am. A 24, 3781–3788(2007). [CrossRef]
  20. K. M. Gundu and A. Mafi, “Reliable computation of scattering from metallic binary gratings using Fourier-based modal methods,” J. Opt. Soc. Am. A 27, 1694–1700 (2010). [CrossRef]
  21. Y. Wu and Y. Y. Lu, “Analyzing diffraction gratings by a boundary integral equation Neumann-to-Dirichlet map method,” J. Opt. Soc. Am. A 26, 2444–2451 (2009). [CrossRef]
  22. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves,” J. Opt. Soc. Am. B 26, 1442–1449 (2009). [CrossRef]
  23. Y. Y. Lu and J. R. McLaughlin, “Riccati method for the Helmholtz equation,” J. Acoust. Soc. Am. 100, 1432–1446(1996). [CrossRef]
  24. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps,” J. Lightw. Technol. 24, 3448–3453 (2006). [CrossRef]
  25. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice,” J. Opt. Soc. Am. B 25, 1466–1473 (2008). [CrossRef]
  26. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  27. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer-Verlag, 1998).
  28. L. Wang, J. A. Cox, and A. Friedman, “Modal analysis of homogeneous optical waveguides by the boundary integral formulation and the Nyström method,” J. Opt. Soc. Am. A 15, 92–100 (1998). [CrossRef]
  29. S. L. Chuang and J. A. Kong, “Wave scattering from a periodic dielectric surface for a general angle of incidence,” Radio Sci. 17, 545–557 (1982). [CrossRef]
  30. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  31. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38, 304–313 (1999). [CrossRef]
  32. L. Li, “Modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993). [CrossRef]
  33. M. Mansuripur, L. Li, and W.-H. Yeh, “Diffraction gratings: part 2,” Opt. Photon. News 10, 44–48 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited