OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1211–1223

Synthesis of three-dimensional light fields with binary spatial light modulators

Erdem Ulusoy, Levent Onural, and Haldun M. Ozaktas  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1211-1223 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001211


View Full Text Article

Enhanced HTML    Acrobat PDF (13864 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computation of a binary spatial light modulator (SLM) pattern that generates a desired light field is a challenging quantization problem for which several algorithms have been proposed, mainly for far-field or Fourier plane reconstructions. We study this problem assuming that the desired light field is synthesized within a volumetric region in the non-far-field range after free space propagation from the SLM plane. We use Fresnel and Rayleigh–Sommerfeld scalar diffraction theories for propagation of light. We show that, when the desired field is confined to a sufficiently narrow region of space, the ideal gray-level complex-valued SLM pattern generating it becomes sufficiently low pass (oversampled) so it can be successfully halftoned into a binary SLM pattern by solving two decoupled real-valued constrained halftoning problems. Our simulation results indicate that, when the synthesis region is considered, the binary SLM is indistinguishable from a lower resolution full complex gray-level SLM. In our approach, free space propagation related computations are done only once at the beginning, and the rest of the computation time is spent on carrying out standard image halftoning.

© 2011 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.2870) Holography : Holographic display
(100.2810) Image processing : Halftone image reproduction
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: February 28, 2011
Manuscript Accepted: March 26, 2011
Published: May 24, 2011

Citation
Erdem Ulusoy, Levent Onural, and Haldun M. Ozaktas, "Synthesis of three-dimensional light fields with binary spatial light modulators," J. Opt. Soc. Am. A 28, 1211-1223 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Tricoles, “Computer-generated holograms: an historical review,” Appl. Opt. 26, 4351–4360 (1987). [CrossRef] [PubMed]
  2. O. Bryngdahl and F. Wyrowski, “Digital holography—computer-generated holograms,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1990), Vol.  28, pp. 1–86. [CrossRef]
  3. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005). [CrossRef]
  4. W. J. Dallas, “Computer-generated holograms,” in Digital Holography and Three-Dimensional Display, T.C.Poon, ed. (Springer, 2006), pp. 1–49. [CrossRef]
  5. F. Wyrowski, “Diffractive optical elements: iterative calculation of quantized, blazed phase structures,” J. Opt. Soc. Am. A 7, 961–969 (1990). [CrossRef]
  6. J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995). [CrossRef]
  7. J. A. Neff, R. A. Athale, and S. H. Lee, “Two-dimensional spatial light modulators: a tutorial,” Proc. IEEE 78, 826–855 (1990). [CrossRef]
  8. M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” ACM SIGGRAPH Comput. Graph. 31, 63–67 (1997). [CrossRef]
  9. , H.M.Ozaktas and L.Onural, eds., Three-Dimensional Television: Capture, Transmission, DisplaySpringer Series in Signals and Communication Technology (Springer, 2008). [CrossRef]
  10. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: A survey,” J. Display Technol. 6, 443–454 (2010). [CrossRef]
  11. L. Onural, F. Yaras, and H. Kang, “Digital holographic three-dimensional video displays,” Proc. IEEE 99, 576–589 (2011). [CrossRef]
  12. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (ACM, 1995), pp. 387–394.
  13. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537–1545 (2003). [CrossRef]
  14. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006). [CrossRef]
  15. M. Janda, I. Hanak, and L. Onural, “Hologram synthesis for photorealistic reconstruction,” J. Opt. Soc. Am. A 25, 3083–3096(2008). [CrossRef]
  16. L. Onural, A. Gotchev, H. M. Ozaktas, and E. Stoykova, “A survey of signal processing problems and tools in holographic three-dimensional television,” IEEE Trans. Circuits Syst. Video Technol. 17, 1631–1646 (2007). [CrossRef]
  17. L. Onural and H. M. Ozaktas, “Signal processing issues in diffraction and holographic 3DTV,” Signal Process. Image Commun. 22, 169–177 (2007). [CrossRef]
  18. T. Kreis, P. Aswendt, and R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001). [CrossRef]
  19. D. Dudley, W. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” White Paper (Texas Instruments, 2003).
  20. B. R. Brown and A. W. Lohmann, “Complex spatial filtering with binary masks,” Appl. Opt. 5, 967–969 (1966). [CrossRef] [PubMed]
  21. A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748 (1967). [CrossRef] [PubMed]
  22. J. P. Waters, “Three-dimensional Fourier-transform method for synthesizing binary holograms,” J. Opt. Soc. Am. 58, 1284–1288(1968). [CrossRef]
  23. R. A. Gabel and B. Liu, “Minimization of reconstruction errors with computer-generated binary holograms,” Appl. Opt. 9, 1180–1191 (1970). [CrossRef] [PubMed]
  24. A. R. Sass, “Binary intensity holograms,” J. Opt. Soc. Am. 61, 910–915 (1971). [CrossRef]
  25. P. L. Ransom and R. F. Henton, “Analysis of a computer-generated binary-phase hologram,” Appl. Opt. 13, 2765–2767(1974). [CrossRef] [PubMed]
  26. W. Lee, “Binary synthetic holograms,” Appl. Opt. 13, 1677–1682(1974). [CrossRef] [PubMed]
  27. R. A. Gabel, “Reconstruction errors in computer-generated binary holograms: a comparative study,” Appl. Opt. 14, 2252–2255(1975). [CrossRef] [PubMed]
  28. W. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979). [CrossRef] [PubMed]
  29. Y. H. Wu and P. Chavel, “Cell-oriented on-axis computer-generated holograms for use in the Fresnel diffraction mode,” Appl. Opt. 23, 228–238 (1984). [CrossRef] [PubMed]
  30. M. Li, A. Larsson, N. Eriksson, and M. Hagberg, “Continuous-level phase-only computer-generated hologram realized by dislocated binary gratings,” Opt. Lett. 21, 1516–1518 (1996). [CrossRef] [PubMed]
  31. R. Hauck and O. Bryngdahl, “Computer-generated holograms with pulse-density modulation,” J. Opt. Soc. Am. A 1, 5–10(1984). [CrossRef]
  32. O. K. Ersoy, J. Zhuang, and J. Brede, “Iterative interlacing approach for synthesis of computer-generated holograms,” Appl. Opt. 31, 6894–6901 (1992). [CrossRef] [PubMed]
  33. P. Thorston, F. Wyrowski, and O. Bryngdahl, “Importance of initial distribution for iterative calculation of quantized diffractive elements,” J. Mod. Opt. 40, 591–600 (1993). [CrossRef]
  34. C. Wu, C. Chen, and M. A. Fiddy, “Iterative procedure for improved computer-generated hologram reconstruction,” Appl. Opt. 32, 5135–5140 (1993). [CrossRef] [PubMed]
  35. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33, 863–868 (1994). [CrossRef] [PubMed]
  36. E. Zhang, S. Noehte, C. H. Dietrich, and R. Manner, “Gradual and random binarization of gray-scale holograms,” Appl. Opt. 34, 5987–5995 (1995). [CrossRef] [PubMed]
  37. L. Legeard, P. Refregier, and P. Ambs, “Multicriteria optimality for iterative encoding of computer-generated holograms,” Appl. Opt. 36, 7444–7449 (1997). [CrossRef]
  38. H. H. Suh, “Color-image generation by use of binary phase holograms,” Opt. Lett. 24, 661–663 (1999). [CrossRef]
  39. R. Eschbach, “Comparison of error diffusion methods for computer-generated holograms,” Appl. Opt. 30, 3702–3710 (1991). [CrossRef] [PubMed]
  40. A. Kirk, K. Powell, and T. Hall, “A generalization of the error diffusion method for binary computer-generated hologram design,” Opt. Commun. 92, 12–18 (1992). [CrossRef]
  41. R. Eschbach and Z. Fan, “Complex valued error diffusion for off-axis computer-generated holograms,” Appl. Opt. 32, 3130–3136(1993). [CrossRef] [PubMed]
  42. F. Fetthauer, S. Weissbach, and O. Bryngdahl, “Equivalence of error diffusion and minimal average error algorithms,” Opt. Commun. 113, 365–370 (1995). [CrossRef]
  43. K. Heggarty and R. Chevallier, “Signal window minimum average error algorithm for computer-generated holograms,” J. Opt. Soc. Am. A 15, 625–635 (1998). [CrossRef]
  44. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987). [CrossRef] [PubMed]
  45. B. K. Jennison and J. P. Allebach, “Efficient design of direct-binary-search computer-generated holograms,” J. Opt. Soc. Am. A 8, 652–660 (1991). [CrossRef]
  46. J. Zhuang and O. K. Ersoy, “Fast decimation-in-frequency direct binary search algorithms for synthesis of computer-generated holograms,” J. Opt. Soc. Am. A 11, 135–143 (1994). [CrossRef]
  47. J. Zhuang and O. K. Ersoy, “Optimal decimation-in-frequency iterative interlacing technique for synthesis of computer-generated holograms,” J. Opt. Soc. Am. A 12, 1460–1468 (1995). [CrossRef]
  48. B. B. Chhetri, S. Yang, and T. Shimomura, “Stochastic approach in the efficient design of the direct-binary-search algorithm for hologram synthesis,” Appl. Opt. 39, 5956–5964 (2000). [CrossRef]
  49. F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989). [CrossRef] [PubMed]
  50. L. Bigue and P. Ambs, “Optimal multicriteria approach to the iterative Fourier transform algorithm,” Appl. Opt. 40, 5886–5893(2001). [CrossRef]
  51. S. H. Tao and X. Yuan, “Practical implementation of the phase-quantization technique in an iterative Fourier-transform algorithm,” Appl. Opt. 43, 2089–2092 (2004). [CrossRef] [PubMed]
  52. J. P. Allebach, “Representation-related errors in binary digital holograms: a unified analysis,” Appl. Opt. 20, 290–299 (1981). [CrossRef] [PubMed]
  53. B. K. Jennison and J. P. Allebach, “Analysis of the leakage from computer-generated holograms synthesized by direct binary search,” J. Opt. Soc. Am. A 6, 234–243 (1989). [CrossRef]
  54. F. Wyrowski, “Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation,” J. Opt. Soc. Am. A 7, 383–393 (1990). [CrossRef]
  55. Y. Chang, P. Zhou, and J. H. Burge, “Analysis of phase sensitivity for binary computer-generated holograms,” Appl. Opt. 45, 4223–4234 (2006). [CrossRef] [PubMed]
  56. C. Maurer, A. Schwaighofer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Suppression of undesired diffraction orders of binary phase holograms,” Appl. Opt. 47, 3994–3998 (2008). [CrossRef] [PubMed]
  57. R. Piestun, B. Spektor, and J. Shamir, “On-axis binary-amplitude computer-generated holograms,” Opt. Commun. 136, 85–92(1997). [CrossRef]
  58. J. A. Davis, K. O. Valadez, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003–2008 (2003). [CrossRef] [PubMed]
  59. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  60. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef] [PubMed]
  61. E. Lalor, “Conditions for the validity of the angular spectrum of plane waves,” J. Opt. Soc. Am. 58, 1235–1237 (1968). [CrossRef]
  62. L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction field,” J. Opt. Soc. Am. A 24, 359–367 (2007). [CrossRef]
  63. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000). [CrossRef]
  64. S. B. Tucker, J. O. Castaneda, and W. T. Cathey, “Matrix description of near-field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16, 316–322 (1999). [CrossRef]
  65. F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981). [CrossRef]
  66. D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing (Prentice Hall, 1990).
  67. R. Ulichney, Digital Halftoning (MIT Press, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited