OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 1297–1306

Quantitative Carré differential interference contrast microscopy to assess phase and amplitude

Donald D. Duncan, David G. Fischer, Amanda Dayton, and Scott A. Prahl  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1297-1306 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001297


View Full Text Article

Enhanced HTML    Acrobat PDF (1542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method of using an unmodified differential interference contrast microscope to acquire quantitative information on scatter and absorption of thin tissue samples. A simple calibration process is discussed that uses a standard optical wedge. Subsequently, we present a phase-stepping procedure for acquiring phase gradient information exclusive of absorption effects. The procedure results in two-dimensional maps of the local angular (polar and azimuthal) ray deviation. We demonstrate the calibration process, discuss details of the phase-stepping algorithm, and present representative results for a porcine skin sample.

© 2011 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(170.0180) Medical optics and biotechnology : Microscopy
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(180.3170) Microscopy : Interference microscopy
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 24, 2011
Revised Manuscript: April 22, 2011
Manuscript Accepted: April 27, 2011
Published: May 31, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Donald D. Duncan, David G. Fischer, Amanda Dayton, and Scott A. Prahl, "Quantitative Carré differential interference contrast microscopy to assess phase and amplitude," J. Opt. Soc. Am. A 28, 1297-1306 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-6-1297


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Subramanian, P. Pradhan, Y. Liu, I. R. Capoglu, X. Li, J. D. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, “Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells,” Proc. Natl. Acad. Sci. USA 105, 20124–10129 (2008). [CrossRef]
  2. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592–1598 (2002). [CrossRef]
  3. C. Mujat and A. Dogariu, “Statistics of partially coherent beams: a numerical analysis,” J. Opt. Soc. Am. A 21, 1000–1003 (2004). [CrossRef]
  4. D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space diffraction,” J. Opt. Soc. Am. A 25, 2571–2581 (2008). [CrossRef]
  5. S. A. Prahl, D. G. Fischer, and D. D. Duncan, “A Monte Carlo Green’s function formalism for the propagation of partially coherent light,” J. Opt. Soc. Am. A 26, 1533–1543 (2009). [CrossRef]
  6. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 1998).
  7. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive index variations in biological tissue,” Opt. Lett. 21, 1310–1312(1996). [CrossRef] [PubMed]
  8. V. I. Tatarski, The Effects of the Turbulent Atmosphere on Wave Propagation (The National Oceanic and Atmospheric Administration, U. S. Department of Commerce and The National Science Foundation, 1971).
  9. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997). [CrossRef]
  10. W. Gao, “Changes of polarization of light beams on propagation through tissue,” Opt. Commun. 260, 749–754 (2006). [CrossRef]
  11. C. Preza, S. V. King, and C. J. Cogswell, “Algorithms for extracting true phase from rotationally-diverse and phase-shifted DIC images,” Proc. SPIE 6090, 60900E (2006). [CrossRef]
  12. M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Appl. Opt. 45, 460–469 (2006). [CrossRef] [PubMed]
  13. K. J. Dana, “Three dimensional reconstruction of the tectorial membrane: an image processing method using Nomarski differential interference contrast microscopy,” Master’s thesis (Massachusetts Institute of Technology, 1992).
  14. S. B. Mehta and C. J. R. Sheppard, “Sample-less calibration of the differential interference contrast microscope,” Appl. Opt. 49, 2954–2968 (2010). [CrossRef] [PubMed]
  15. C. B. Müller, K. Weiß, W. Richtering, A. Loman, and J. Enderlein, “Calibrating differential interference contrast microscopy with dual-focus fluorescence correlation spectroscopy,” Opt. Express 16, 4322–4329 (2008). [CrossRef] [PubMed]
  16. N. N. Boustany, S. C. Kuo, and N. V. Thakor, “Optical scatter imaging: subcellular morphometry in situ with Fourier filtering,” Opt. Lett. 26, 1063–1065 (2001). [CrossRef]
  17. N. N. Boustany, R. Drezek, and N. V. Thakor, “Calcium-induced alterations in mitochondrial morphology quantified in situ with optical scatter imaging,” Biophys. J. 83, 1691–1700 (2002). [CrossRef] [PubMed]
  18. J.-Y. Zheng, R. M. Pasternack, and N. N. Boustany, “Optical scatter imaging with a digital micromirror device,” Opt. Express 17, 20401–20414 (2009). [CrossRef] [PubMed]
  19. R. M. Pasternack, Z. Qian, J.-Y. Zheng, D. N. Metaxas, and N. N. Boustany, “Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters,” Opt. Express 17, 12001–12012(2009). [CrossRef] [PubMed]
  20. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, “Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging,” Opt. Lett. 35, 447–449 (2010). [CrossRef] [PubMed]
  21. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983). [CrossRef]
  22. D. Murphy, “Differential interference contrast (DIC) microscopy and modulation contrast microscopy,” in Fundamentals of Light Microscopy and Digital Imaging (Wiley-Liss, 2001), pp. 153–168.
  23. C. Preza, D. L. Snyder, and J.-A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185–2199 (1999). [CrossRef]
  24. S. V. King, A. Libertun, R. Piestun, C. J. Cogswell, and C. Preza, “Quantitative phase microscopy through differential interference imaging,” J. Biomed. Opt. 13, 024020 (2008). [CrossRef] [PubMed]
  25. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed., Course of Theoretical Physics Series (Reed Elsevier, 2000), Volume  2.
  26. K. Creath, “Phase-measurement interferometry techniques,” in Progress in Optics, E.Wolf, ed. (Elsevier, 1988), Vol.  26, pp. 349–393. [CrossRef]
  27. J. Novák, P. Novák, and A. Mikš, “Multi-step phase-shifting algorithms insensitive to linear phase shift errors,” Opt. Commun. 281, 5302–5309 (2008). [CrossRef]
  28. W. J. Tropf, M. E. Thomas, and T. J. Harris, “Properties of crystals and glasses,” in Devices Measurements, & Properties, 2nd ed., M.Bass, E.W.Van Stryland, D.R.Williams, and W.L.Wolfe, eds., Handbook of Optics (McGraw-Hill, 1995), Vol.  II, pp. 33.3–33.101.
  29. S. B. Mehta and C. J. R. Sheppard, “Quantitative phase retrieval in the partially coherent differential interference contrast (DIC) microscope,” presented at Focus on Microscopy, Krakow, Poland, 5–8 April 2009.
  30. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  31. S. B. Mehta and C. J. R. Sheppard, “Partially coherent image formation in differential interference contrast (DIC) microscope,” Opt. Express 16, 19462–19479 (2008). [CrossRef] [PubMed]
  32. Q. Kemao, S. Fangjun, and W. Xiaoping, “Determination of the best phase step of the Carré algorithm in phase shifting interferometry,” Meas. Sci. Technol. 11, 1220–1223 (2000). [CrossRef]
  33. B. Gutmann and H. Weber, “Phase-shifter calibration and error detection in phase-shifting applications: a new method,” Appl. Opt. 37, 7624–7631 (1998). [CrossRef]
  34. S. Schwartz, D. B. Murphy, K. R. Spring, and M. W. Davidson, “de Sénarmont bias retardation in DIC microscopy,” http://www.microscopyu.com/pdfs/DICMicroscopy.pdf (Nikon MicroscopyU, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited