OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 6 — Jun. 1, 2011
  • pp: 962–969

Traveling waves in two parallel infinite linear point-scatterer arrays

Ioannis Chremmos and George Fikioris  »View Author Affiliations

JOSA A, Vol. 28, Issue 6, pp. 962-969 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Traveling waves in two coupled parallel infinite linear point-scatterer arrays are studied analytically for the first time to our knowledge. The two arrays are considered to be generally offset in the axial direction. It is found that slow quasi-even/odd supermodes are supported, as a result of the coupling-induced splitting of the modes of the single array, in direct analogy to standard optical waveguide couplers. Exactly even/odd supermodes are supported when the axial offset is zero. Mode splitting, dispersion curves, and coupling length are numerically investigated versus the inter-element spacing, the inter-array distance, and the axial offset. Potential applications of the concept are in directional optical couplers made of metallic or dielectric nanoparticle chains.

© 2011 Optical Society of America

OCIS Codes
(230.7020) Optical devices : Traveling-wave devices
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(130.5296) Integrated optics : Photonic crystal waveguides
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optical Devices

Original Manuscript: December 6, 2010
Revised Manuscript: March 16, 2011
Manuscript Accepted: March 18, 2011
Published: May 6, 2011

Ioannis Chremmos and George Fikioris, "Traveling waves in two parallel infinite linear point-scatterer arrays," J. Opt. Soc. Am. A 28, 962-969 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic, 2005).
  2. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003). [CrossRef] [PubMed]
  4. F. Bloch, “Über die quantenmechanik der elektronen in kristallgittern,” Z. Phys. 52, 555–600 (1928). [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).
  6. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127–12133 (1998). [CrossRef]
  7. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  8. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). [CrossRef]
  9. L. Xianshu and A. W. Poon, “Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators,” Opt. Express 17, 23617–23628 (2009). [CrossRef]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31, 456–458 (2006). [CrossRef] [PubMed]
  11. S. Nishikawa, S. Lan, N. Ikeda, Y. Sugimoto, H. Ishikawa, and K. Asakawa, “Optical characterization of photonic crystal delay lines based on one-dimensional coupled defects,” Opt. Lett. 27, 2079–2081 (2002). [CrossRef]
  12. J. B. Khurgin and R. S. Tucker, eds., Slow Light Science and Applications (CRC Press, 2009).
  13. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  14. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000). [CrossRef]
  15. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714–1716 (2002). [CrossRef]
  16. S. Maier, Plasmonics: Fundamentals and applications (Springer, 2002).
  17. S. Fan, N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995). [CrossRef]
  18. P.-G. Luan and K.-D. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006). [CrossRef] [PubMed]
  19. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delâge, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt. Express 18, 20251–20262 (2010). [CrossRef] [PubMed]
  20. R. A. Shore and A. D. Yaghjian, “Traveling electromagnetic waves on linear periodic arrays of lossless penetrable spheres,” IEICE Trans. Commun. E88-B, 2346–2352 (2005). [CrossRef]
  21. A. D. Yaghjian, “Scattering-matrix analysis of linear periodic arrays,” IEEE Trans. Antennas Propag. 50, 1050–1064 (2002). [CrossRef]
  22. R. W. P. King, G. Fikioris, and R. B. Mack, Arrays of Cylindrical Dipoles (Cambridge University, 2002). [CrossRef]
  23. I. Psarros and G. Fikioris, “Two-term theory for infinite linear array and application to study of resonances,” J. Electromagn. Waves Appl. 20, 623–645 (2006). [CrossRef]
  24. G. Fikioris, R. W. P. King, and T. T. Wu, “The resonant circular array of electrically short elements,” J. Appl. Phys. 68, 431–439(1990). [CrossRef]
  25. I. Psarros and I. Chremmos, “Resonance splitting in two coupled circular closed-loop arrays and investigation of analogy to traveling-wave optical resonators,” Prog. Electromagn. Res. 87, 197–214 (2008). [CrossRef]
  26. T. T. Wu, “Fermi pseudopotentials and resonances in arrays,” in Resonances-Models and Phenomena, S.Albeverio, L.S.Ferreira and L.Streit, eds. (Springer, 1984), pp. 293–306. [CrossRef]
  27. I. Psarros, G. Fikioris, and M. Vlahoyianni, “Pseudopotentials: a simplified model for certain types of array elements,” IEEE Trans. Antennas Propag. 57, 414–424 (2009). [CrossRef]
  28. I. Chremmos and G. Fikioris, “Note on acoustic pseudopotentials: energy viewpoint, real scatterers and linear arrays,” Acta Acust. Acust. 97, 364–372 (2011). [CrossRef]
  29. P.-G. Luan and K.-D. Chang, “Periodic dielectric waveguide beam splitter based on co-directional coupling,” Opt. Express 15, 4536–4545 (2007). [CrossRef] [PubMed]
  30. W. W. Huang, Y. Zhang, and B. J. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008). [CrossRef] [PubMed]
  31. I. Chremmos and N. Uzunoglu, “Propagation in a directional coupler of parallel microring coupled-resonator optical waveguides,” Opt. Commun. 281, 3381–3389 (2008). [CrossRef]
  32. L. L. Foldy, “The multiple scattering of waves,” Phys. Rev. 67, 107–119 (1945). [CrossRef]
  33. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, 2007). .
  34. We would like to note that, in the Appendix of , energy arguments are provided to show that linear arrays of generalized radiating elements can support only slow modes, provided that the far-field pattern of a single element does not have nulls with respect to the polar angle. These arguments apply to our case too, where the two offset elements of each period can be viewed as a single super-element. However, we believe that a more rigorous derivation of this result is still lacking.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited