OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1331–1340

Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes

Ihor Skab, Yurij Vasylkiv, Bohdan Zapeka, Viktoriya Savaryn, and Rostyslav Vlokh  »View Author Affiliations


JOSA A, Vol. 28, Issue 7, pp. 1331-1340 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001331


View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed.

© 2011 Optical Society of America

OCIS Codes
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence
(260.6042) Physical optics : Singular optics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: March 18, 2011
Revised Manuscript: April 26, 2011
Manuscript Accepted: May 5, 2011
Published: June 3, 2011

Citation
Ihor Skab, Yurij Vasylkiv, Bohdan Zapeka, Viktoriya Savaryn, and Rostyslav Vlokh, "Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes," J. Opt. Soc. Am. A 28, 1331-1340 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-7-1331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936). [CrossRef]
  2. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  3. D. P. DiVincenzo, “Quantum computation,” Science 270, 255–261 (1995). [CrossRef]
  4. S. Ya. Kilin, “Quantum information,” Phys. Usp. 42435–452 (1999). [CrossRef]
  5. D. Boschi, S. Branca, F. De Martini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998). [CrossRef]
  6. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001). [CrossRef] [PubMed]
  7. G. Molina-Terriza, J. P. Torres, and L. Torner, “Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum,” Phys. Rev. Lett. 88, 013601 (2001). [CrossRef]
  8. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  9. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversation via an electrically tunable q-plate,” Appl. Phys. Lett. 97, 241104 (2010). [CrossRef]
  10. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  11. I. Skab, Yu. Vasylkiv, V. Savaryn, and R. Vlokh, “Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex,” J. Opt. Soc. Am. A 28, 633–640 (2011). [CrossRef]
  12. R. Vlokh, M. Kostyrko, and I. Skab, “Principle and application of crystallo-optical effects induced by inhomogeneous deformation,” Jpn. J. Appl. Phys. 37, 5418–5420 (1998). [CrossRef]
  13. I. Skab, I. Smaga, V. Savaryn, Yu. Vasylkiv, and R. Vlokh, “Torsion method for measuring piezooptic coefficients,” Cryst. Res. Technol. 46, 23–36 (2011). [CrossRef]
  14. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A Pure Appl. Opt. 7, 685–690 (2005). [CrossRef]
  15. R. Vlokh, A. Volyar, O. Mys, and O. Krupych, “Appearance of optical vortex at conical refraction. Examples of NaNO2 and YFeO3 crystals,” Ukr. J. Phys. Opt. 4, 90–93 (2003). [CrossRef]
  16. M. V. Berry, “Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike,” J. Opt. A Pure Appl. Opt. 6, 289–300 (2004). [CrossRef]
  17. Yu. I. Sirotin and M. P. Shaskolskaya, Fundamentals of Crystal Physics (Nauka, 1979).
  18. T. S. Narasimhamurty, Photoelastic and Electrooptic Properties of Crystals (Plenum, 1981).
  19. I. Skab, Yu. Vasylkiv, V. Savaryn, and R. Vlokh, “Relations for optical indicatrix parameters in the conditions of crystal torsion,” Ukr. J. Phys. Opt. 11, 193–240 (2010). [CrossRef]
  20. S. Haussühl, Physical Properties of Crystals: An Introduction (Wiley-VCH, 2008).
  21. I. Skab, Yu. Vasylkiv, I. Smaga, V. Savaryn, and R. Vlokh, “On the method for measuring piezooptic coefficients π25 and π14 in the crystals belonging to point symmetry groups 3 and 3¯,” Ukr. J. Phys. Opt. 12, 28–35 (2011). [CrossRef]
  22. M. R. Dennis, “Local phase structure of wave dislocation lines: twist and twirl,” J. Opt. A Pure Appl. Opt. 6, S202–S208(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (204 KB)     
» Media 2: MOV (76 KB)     
» Media 3: MOV (254 KB)     
» Media 4: MOV (139 KB)     
» Media 5: MOV (719 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited