OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1341–1348

Method-of-moments formulation for the analysis of plasmonic nano-optical antennas

José M. Taboada, Javier Rivero, Fernando Obelleiro, Marta G. Araújo, and Luis Landesa  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1341-1348 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (561 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a surface integral equation (SIE) to model the electromagnetic behavior of metallic objects at optical frequencies. The electric and magnetic current combined field integral equation considering both tangential and normal equations is applied. The SIE is solved by using a method-of-moments (MoM) formulation. The SIE-MoM approach is applied only on the material boundary surfaces and interfaces, avoiding the cumbersome volumetric discretization of the objects and the surrounding space required in differential-equation formulations. Some canonical examples have been analyzed, and the results have been compared with analytical reference solutions in order to prove the accuracy of the proposed method. Finally, two plasmonic Yagi–Uda nanoantennas have been analyzed, illustrating the applicability of the method to the solution of real plasmonic problems.

© 2011 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(260.3910) Physical optics : Metal optics
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: March 18, 2011
Revised Manuscript: May 9, 2011
Manuscript Accepted: May 15, 2011
Published: June 3, 2011

José M. Taboada, Javier Rivero, Fernando Obelleiro, Marta G. Araújo, and Luis Landesa, "Method-of-moments formulation for the analysis of plasmonic nano-optical antennas," J. Opt. Soc. Am. A 28, 1341-1348 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010). [CrossRef] [PubMed]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005). [CrossRef] [PubMed]
  5. M. L. Brongersma, “Plasmonics: engineering optical nanoantennas,” Nat. Photon. 2, 270–273 (2008). [CrossRef]
  6. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  7. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7, 28–33(2007). [CrossRef] [PubMed]
  8. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007). [CrossRef] [PubMed]
  9. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7, 496–501 (2007). [CrossRef] [PubMed]
  10. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210, 279–283 (2003). [CrossRef] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004). [CrossRef]
  12. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1608(2005). [CrossRef] [PubMed]
  13. J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005). [CrossRef]
  14. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355–360 (2006). [CrossRef] [PubMed]
  15. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15, 17736–17746(2007). [CrossRef] [PubMed]
  16. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” New J. Phys. 10, 105005 (2008). [CrossRef]
  17. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi–Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007). [CrossRef]
  18. H. F. Hofmann, T. Kosako, and Y. Kadoya, “Design parameters for a nano-optical Yagi–Uda antenna,” New J. Phys. 9, 217(2007). [CrossRef]
  19. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi–Uda antenna,” Opt. Express 16, 10858–10866(2008). [CrossRef] [PubMed]
  20. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photon. 4, 312–315 (2010). [CrossRef]
  21. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef] [PubMed]
  22. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10, 3596–3603 (2010). [CrossRef] [PubMed]
  23. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. 23, 623–630 (1975). [CrossRef]
  24. T. Weiland, “A discretization method for the solution of Maxwell’s equations for six-component fields,” AEU Arch. Elektron. Übertragungstech. 31, 116–120 (1977).
  25. P. Monk, Finite Element Methods for Maxwell’s Equations(Oxford University Press, 2003). [CrossRef]
  26. R. F. Harrington, Field Computation by Moment Methods, IEEE Series on Electromagnetic Wave Theory (IEEE, 1993). [CrossRef]
  27. A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).
  28. Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977). [CrossRef]
  29. T. K. Wu and L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977). [CrossRef]
  30. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A 26, 732–740 (2009). [CrossRef]
  31. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A 27, 2261–2271 (2010). [CrossRef]
  32. M. S. Yeung, “Single integral equation for electromagnetic scattering by three-dimensional dielectric objects,” IEEE Trans. Antennas Propag. 47, 1615–1622 (1999). [CrossRef]
  33. P. Ylä-Oijala, M. Taskinen, and S. Järvenpää, “Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods,” Radio Sci. 40, RS6002 (2005). [CrossRef]
  34. S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990). [CrossRef]
  35. K. C. Donepudi, J.-M. Jin, and W. C. Chew, “A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies,” IEEE Trans. Antennas Propag. 51, 2814–2821 (2003). [CrossRef]
  36. P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005). [CrossRef]
  37. P. Ylä-Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general integral equation method for general composite metallic and dielectric structures with junctions,” PIER 52, 81–108 (2005). [CrossRef]
  38. Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009). [CrossRef]
  39. J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886(2010). [CrossRef] [PubMed]
  40. J. M. Taboada, L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mouriño, and A. Gomez, “High scalability FMM-FFT electromagnetic solver for supercomputer systems,” IEEE Antennas Propag. Mag. 51 (6), 20–28 (2009). [CrossRef]
  41. M. G. Araújo, J. M. Taboada, F. Obelleiro, J. M. Bértolo, L. Landesa, J. Rivero, and J. L. Rodríguez, “Supercomputer aware approach for the solution of challenging electromagnetic problems,” PIER 101, 241–256 (2010). [CrossRef]
  42. J. M. Taboada, M. G. Araújo, J. M. Bértolo, L. Landesa, F. Obelleiro, and J. L. Rodríguez, “MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics,” PIER 105, 15–30 (2010), invited paper. [CrossRef]
  43. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982). [CrossRef]
  44. D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, “Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antennas Propag. 32, 276–281(1984). [CrossRef]
  45. R. E. Hodges and Y. Rahmat-Samii, “The evaluation of MFIE integrals with the use of vector triangle basis functions,” Microw. Opt. Technol. Lett. 14, 9–14 (1997). [CrossRef]
  46. R. D. Graglia, “On the numerical integration of the linear shape functions times the 3-D Green’s function or its gradient on a plane triangle,” IEEE Trans. Antennas Propag. 41, 1448–1455(1993). [CrossRef]
  47. P. Ylä-Oijala and M. Taskinen, “Calculation of CFIE impedance matrix elements with RWG and n^×RWG functions,” IEEE Trans. Antennas Propag. 51, 1837–1846 (2003). [CrossRef]
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  49. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley & Sons, 1982).
  50. A. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef] [PubMed]
  51. B. Stout, A. Devilez, B. Rolly, and N. Bonod, “Multipole methods for nano-antennas design: applications to Yagi–Uda configurations,” J. Opt. Soc. Am. B 28, 1213–1223 (2011). [CrossRef]
  52. A. Devilez, N. Bonod, and B. Stout, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4, 3390–3396 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2731 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited