OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1349–1357

Extension of the Kubelka–Munk theory for fluorescent turbid media to a nonopaque layer on a background

Lionel Simonot, Mathieu Thoury, and John Delaney  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1349-1357 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoluminescence is one of the processes by which photons are emitted after the absorption of incoming photons at a higher energy. But the yield and spectral band shape of the emission can be altered by the optical properties of the luminophore environment through scattering and absorption. To understand these effects on a photoluminescent turbid layer, the Kubelka–Munk model, which is a two-flux approximation of the radiative transfer equation, can be used. Compared to previous works, this translucent layer can be applied on a colored opaque background. The model takes into account the absorption, scattering, and luminescent properties of the layer and the reflection by the background, for both the light excitation and the light emission. The competition between these different optical interactions is studied; e.g., the model can predict the presence of an emission maximum by increasing the thickness of the luminescent layer on a light background. Moreover, the model is extended to two important cases: the presence of a photoluminescent background and the effect of a refractive index discontinuity.

© 2011 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(260.2510) Physical optics : Fluorescence
(290.7050) Scattering : Turbid media
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Physical Optics

Original Manuscript: April 18, 2011
Manuscript Accepted: April 29, 2011
Published: June 3, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Lionel Simonot, Mathieu Thoury, and John Delaney, "Extension of the Kubelka–Munk theory for fluorescent turbid media to a nonopaque layer on a background," J. Opt. Soc. Am. A 28, 1349-1357 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Lagorio, L. E. Dicelio, M. Litter, and E. San Roman, “Modeling of fluorescence quantum yields of supported dyes,” J. Chem. Soc. Faraday Trans. 94, 419–425 (1998). [CrossRef]
  2. R. Pedrós, Y. Goulas, S. Jacquemoud, J. Louis, and I. Moya, “FluorMODleaf: a new leaf fluorescence emission model based on the PROSPECT model,” Remote Sens. Environ. 114, 155–167 (2010). [CrossRef]
  3. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993). [CrossRef] [PubMed]
  4. S. C. Davis, B. W. Pogue, S. B. Tuttle, H. Dehghani, and K. D. Paulsen, “Spectral distortion in diffuse molecular luminescence tomography in turbid media,” J. Appl. Phys. 105, 102024 (2009). [CrossRef]
  5. E. Allen, “Fluorescent white dyes: calculation of fluorescence from reflectivity values,” J. Opt. Soc. Am. 54, 506–515 (1964). [CrossRef]
  6. R. G. Hersch, “Spectral prediction model for color prints on paper with fluorescent additives,” Appl. Opt. 47, 6710–6722 (2008). [CrossRef] [PubMed]
  7. T. H. Morton, “Fluorescent brightening agents on textiles: elementary optical theory and its practical applications,” J. Soc. Dyers Colour. 79, 238–242 (2008). [CrossRef]
  8. E. R. De la Rie, “Fluorescence of paint and varnish layers (part II),” Stud. Conserv. 27, 65–69 (1982). [CrossRef]
  9. T. Miyoshi, “Fluorescence from oil colours, linseed oil and poppy oil under N//2 laser excitation,” Jpn. J. Appl. Phys. 24, 371–372 (1985). [CrossRef]
  10. M. Thoury, M. Elias, J. M. Frigerio, and C. Barthou, “Nondestructive varnish identification by ultraviolet fluorescence spectroscopy,” Appl. Spectrosc. 61, 1275–1282 (2007). [CrossRef]
  11. G. Verri, C. Clementi, D. Comelli, S. Cather, and F. Piqué, “Correction of ultraviolet-induced fluorescence spectra for the examination of polychromy,” Appl. Spectrosc. 62, 1295–1302 (2008). [CrossRef] [PubMed]
  12. C. Clementi, C. Miliani, G. Verri, S. Sotiropoulou, A. Romani, B. G. Brunetti, and A. Sgamellotti, “Application of the Kubelka–Munk correction for self-absorption of fluorescence emission in carmine lake paint layers,” Appl. Spectrosc. 63, 1323–1330(2009). [CrossRef] [PubMed]
  13. M. Elias, C. Magnain, C. Barthou, A. Nevin, D. Comelli, and G. Valentini, “UV-fluorescence spectroscopy for identification of varnishes in works of art: influence of the underlayer on the emission spectrum,” Proc. SPIE 7391, 739104 (2009). [CrossRef]
  14. J. K. Delaney, J. G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. M. Morales, E. R. De La Rie, and A. Hoenigswald, “Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials in situ,” Appl. Spectrosc. 64, 584–594 (2010). [CrossRef] [PubMed]
  15. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Z. Tech. Phys. 12, 593–601 (1931).
  16. G. Kortüm, Reflectance Spectroscopy (Springer Verlag, 1969), pp. 103–123 and 152–156.
  17. L. Fukshansky and N. Kazarinova, “Extension of the Kubelka–Munk theory of light propagation in intensively scattering materials to fluorescent media,” J. Opt. Soc. Am. 70, 1101–1111(1980). [CrossRef]
  18. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896–1900 (2009). [CrossRef]
  19. A. Kokhanovsky, “Erratum: radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 27, 2084–2084 (2010). [CrossRef]
  20. L. Saunderson, “Calculation of the color pigmented plastics,” J. Opt. Soc. Am. 32, 727–736 (1942). [CrossRef]
  21. D. B. Judd, “Fresnel reflection of diffusely incident light,” J. Res. Natl. Bur. Stand. 29, 329–332 (1942).
  22. L. Simonot, “A photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets,” Appl. Opt. 48, 5793–5801 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited