OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1358–1363

Narrow beams in scattering media: the advanced small-angle approximation

Yaroslaw A. Ilyushin and Vladimir P. Budak  »View Author Affiliations


JOSA A, Vol. 28, Issue 7, pp. 1358-1363 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001358


View Full Text Article

Enhanced HTML    Acrobat PDF (648 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The problem of the propagation of narrow radiation beams in a scattering medium is considered. The previously formulated small-angle approximation solution accounting for the path length spread is further developed. The numerical scheme for practical calculations is implemented, and the simulation results are presented and discussed. Applicability of the new solution to certain problems of optical communications and data transfer techniques is shown.

© 2011 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(010.3640) Atmospheric and oceanic optics : Lidar
(290.1350) Scattering : Backscattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 4, 2011
Revised Manuscript: May 16, 2011
Manuscript Accepted: May 16, 2011
Published: June 6, 2011

Citation
Yaroslaw A. Ilyushin and Vladimir P. Budak, "Narrow beams in scattering media: the advanced small-angle approximation," J. Opt. Soc. Am. A 28, 1358-1363 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-7-1358


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. S. Harris, “Water and ice cloud discrimination by laser beam scattering,” Appl. Opt. 10, 732–737 (1971). [CrossRef] [PubMed]
  2. D. Arnush, “Underwater light-beam propagation in the small-angle-scattering approximation,” J. Opt. Soc. Am. 62, 1109–1111(1972). [CrossRef]
  3. L. B. Stotts, “The radiance produced by laser radiation transversing a particulate multiple-scattering medium,” J. Opt. Soc. Am. 67, 815–819 (1977). [CrossRef]
  4. L. B. Stotts, “Limitations of approximate Fourier techniques in solving radiative-transfer problems,” J. Opt. Soc. Am. 69, 1719–1722 (1979). [CrossRef]
  5. W. G. Tam and A. Zardecki, “Laser beam propagation in particulate media,” J. Opt. Soc. Am. 69, 68–70 (1979). [CrossRef]
  6. W. S. Helliwell, “Finite-difference solution to the radiative-transfer equation for in-water radiance,” J. Opt. Soc. Am. A 2, 1325–1330 (1985). [CrossRef]
  7. P. L. Walker, “Beam propagation through slab scattering media in the small angle approximation,” Appl. Opt. 26, 524–528(1987). [CrossRef] [PubMed]
  8. J. Tessendorf, “Time dependent radiative transfer and pulse evolution,” J. Opt. Soc. Am. A 6, 280–297 (1989). [CrossRef]
  9. F. Hanson and M. Lasher, “Effects of underwater turbulence on laser beam propagation and coupling into single-mode optical fiber,” Appl. Opt. 49, 3224–3230 (2010). [CrossRef] [PubMed]
  10. Y. A. Ilyushin and V. P. Budak, “Narrow-beam propagation in a two-dimensional scattering medium,” J. Opt. Soc. Am. A 28, 76–81 (2011). [CrossRef]
  11. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (Interscience, 1967).
  12. B. V. Kaul and I. V. Samokhvalov, “Double scattering approximation of the atmospheric laser location equation taking polarization effects into account,” Russ. Phys. J. 19, 64–67 (1976). [CrossRef]
  13. S. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53, 214–233(1963). [CrossRef]
  14. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334(1990). [CrossRef] [PubMed]
  15. H. S. Snyder and W. T. Scott, “Multiple scattering of fast charged particles,” Phys. Rev. 76, 220–225 (1949). [CrossRef]
  16. L. Tsang and A. Ishimaru, “Backscattering enhancement of random discrete scatterers,” J. Opt. Soc. Am. A 1, 836–839 (1984). [CrossRef]
  17. W. G. Tam, “Aerosol backscattering of a laser beam,” Appl. Opt. 22, 2965–2969 (1983). [CrossRef] [PubMed]
  18. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464–2472 (1998). [CrossRef]
  19. S. Ito, “Theory of beam light pulse propagation through thick clouds: effects of beamwidth and scatterers behind the light source on pulse broadening,” Appl. Opt. 20, 2706–2715 (1981). [CrossRef] [PubMed]
  20. I. Sreenivasiah and A. Ishimaru, “Beam wave two-frequency mutual-coherence function and pulse propagation in random media: an analytic solution,” Appl. Opt. 18, 1613–1618(1979). [CrossRef] [PubMed]
  21. K. K. Benke and B. H. J. McKellar, “Modulation transfer function of photographic emulsion: the small-angle approximation in radiative transfer theory,” Appl. Opt. 29, 151–156 (1990). [CrossRef] [PubMed]
  22. W. G. Tam and A. Zardecki, “Multiple scattering corrections to the Beer-Lambert law. 1: Open detector,” Appl. Opt. 21, 2405–2412 (1982). [CrossRef] [PubMed]
  23. M. A. Box and A. Deepak, “Limiting cases of the small-angle scattering approximation solutions for the propagation of laser beams in anisotropic scattering media,” J. Opt. Soc. Am. 71, 1534–1539 (1981). [CrossRef]
  24. J. W. McLean, J. D. Freeman, and R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998). [CrossRef]
  25. R. E. Walker and J. W. McLean, “Lidar equations for turbid media with pulse stretching,” Appl. Opt. 38, 2384–2397 (1999). [CrossRef]
  26. V. P. Budak and A. V. Kozelskii, “Accuracy and applicability domain of the small angle approximation,” Atmos. Opt. 18, 32–37 (2005).
  27. Y. Ilyushin and V. Budak, “Analysis of the propagation of the femtosecond laser pulse in the scattering medium,” Comput. Phys. Commun. 182, 940–945 (2011). [CrossRef]
  28. V. P. Budak and Y. A. Ilyushin, “Separation of the singular part of the light field on the basis of the small angle solutions of the transfer theory,” Atmos. Opt. 24, 93–100 (2011).
  29. M. D. Alexandrov and V. S. Remizovich, “Depth mode characteristics of light propagation in real turbid media and media with two-dimensional scattering,” J. Opt. Soc. Am. A 12, 2726–2735(1995). [CrossRef]
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972).
  31. E. Wigner, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic, 1959).
  32. S. D. Gedzelman, M.  Á. López-Álvarez, J. Hernandez-Andrés, and R. Greenler, “Quantifying the “milky sky” experiment,” Appl. Opt. 47, H128 –H132 (2008). [CrossRef] [PubMed]
  33. N. L. Swanson, V. M. Gehman, B. D. Billard, and T. L. Gennaro, “Limits of the small-angle approximation to the radiative transport equation,” J. Opt. Soc. Am. A 18, 385–391 (2001). [CrossRef]
  34. N. L. Swanson, B. D. Billard, V. M. Gehman, and T. L. Gennaro, “Application of the small-angle approximation to ocean water types,” Appl. Opt. 40, 3608–3613 (2001). [CrossRef]
  35. R. A. Elliott, “Multiple scattering of optical pulses in scale model clouds,” Appl. Opt. 22, 2670–2681 (1983). [CrossRef] [PubMed]
  36. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 –R93 (1999). [CrossRef]
  37. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277–283 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited