OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1387–1394

Diffractive properties of obstructed vector Laguerre–Gaussian beam under tight focusing condition

Sunil Vyas, Masato Niwa, Yuichi Kozawa, and Shunichi Sato  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1387-1394 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffractive and focusing properties of vector Laguerre–Gaussian beams with obstacle are investigated under tight focusing conditions. Using vector diffraction theory, intensity and polarization distributions near the focus at different orthogonal planes are calculated and analyzed for vector Laguerre–Gaussian beams. It is observed that the beam is able to compensate the distortion produced by obstacles when the size of the obstacle is small. The structural changes in the polarization distribution are not the same in different orthogonal planes. The polarization characteristics of the beam show a significant change when the size of the obstacle is large. A comparative study of the focusing and diffractive properties of vector Laguerre–Gaussian and vector Bessel–Gaussian beams has also been performed.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: February 14, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: May 6, 2011
Published: June 10, 2011

Sunil Vyas, Masato Niwa, Yuichi Kozawa, and Shunichi Sato, "Diffractive properties of obstructed vector Laguerre–Gaussian beam under tight focusing condition," J. Opt. Soc. Am. A 28, 1387-1394 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  2. A. Tovar, “Production and propagation of cylindrically polarized Laguerre–Gaussian laser beams,” J. Opt. Soc. Am. A 15, 2705–2711 (1998). [CrossRef]
  3. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to application,” Adv. Opt. Photon. 1, 1–57 (2009). [CrossRef]
  4. D. Phol, “Operation of a Ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972). [CrossRef]
  5. S. Quabis, R. Dorn, and G. Leuches, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005). [CrossRef]
  6. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut ND:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006). [CrossRef] [PubMed]
  7. V. G. Niziev, R. S. Chang, and A. V. Nesterov, “Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer,” Appl. Opt. 45, 8393–8399 (2006). [CrossRef] [PubMed]
  8. Y. Kozawa and S. Sato, “Demonstration and selection of a single-transverse higher-order-mode beam with radial polarization,” J. Opt. Soc. Am. A 27, 399–403 (2010). [CrossRef]
  9. A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27, 2072–2077 (2010). [CrossRef]
  10. K. Huang, P. Shi, G. W. Cao, K. Li, X. B. Zhang, and Y. P. Li, “Vector-vortex Bessel–Gauss beams and their tightly focusing properties,” Opt. Lett. 36, 888–890 (2011). [CrossRef] [PubMed]
  11. H. Kang, B. Jia, and M. Gu, “Polarization characterization in the focal volume of high numerical aperture objectives,” Opt. Express 18, 10813–10821 (2010). [CrossRef] [PubMed]
  12. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbit angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007). [CrossRef] [PubMed]
  13. Z. Zhang, J. Pu, and X. Wang, “Distribution of phase and orbital angular momentum of tightly focused vortex beams,” Opt. Eng. 47, 068001 (2008). [CrossRef]
  14. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007). [CrossRef]
  15. X. Tsampoula, V. Garces-Chavez, M. Comrie, D. J. Stevenson, B. Agate, C. T. A. Brown, F. Gunn-Moore, and K. Dholakia, “Femtosecond cellular transfection using a nondiffracting light beam,” Appl. Phys. Lett. 91, 053902 (2007). [CrossRef]
  16. V. Karsasek, T. Cizmar, O. Brzobohaty, and P. Zemanek, “Long-range one-dimensional longitudinal optical binding,” Phys. Rev. Lett. 101, 143601 (2008). [CrossRef]
  17. T. Cizmar, V. Garces-Chavez, and K. Dholakia, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005). [CrossRef]
  18. V. Garces-Chavez, D. Roskey, M. D. Summers, H. Melville, D. McGloin, E. M. Wright, and K. Dholakia, “Optical levitation in a Bessel light beam,” Appl. Phys. Lett. 85, 4001–4003(2004). [CrossRef]
  19. E. McLeod and C. B. Arnold, “Subwavelenth direct-write nanopatterning using optically trapped microspheres,” Nature Nanotechnol. 3, 413–417 (2008). [CrossRef]
  20. P. Dufour, M. Piche, Y. De Koninck, and N. McCarthy, “Two-photon excitation fluorescence microscopy with a high depth of field using an axicon,” Appl. Opt. 45, 9246–9252(2006). [CrossRef] [PubMed]
  21. F. O. Farrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon. 4, 780–785(2010). [CrossRef]
  22. M. Eerelyi, Z. L. Horvath, G. Szabo, and Zs. Bor, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997). [CrossRef]
  23. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16, 12880–12891 (2008). [CrossRef] [PubMed]
  24. Z. Bouch, “Resistance of nondiffracting vortex beam against amplitude and phase perturbations,” Opt. Commun. 210, 155–164(2002). [CrossRef]
  25. M. V. Vasnetsov, I. G. Marienko, and M. S. Soskin, “Self-reconstruction of an optical vortex,” JETP Lett. 71, 130–133(2000). [CrossRef]
  26. S. H. Tao and X. Yuan, “Self-reconstruction property of fractional Bessel beams,” J. Opt. Soc. Am. A 21, 1192–1197 (2004). [CrossRef]
  27. S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel–Gauss beams at the focal plane,” J. Opt. Soc. Am. A 28, 837–843 (2011). [CrossRef]
  28. F. Gori and G. Guattari, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  29. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147(2002). [CrossRef] [PubMed]
  30. Z. Zheng, B. F. Zhang, H. Chen, J. Ding, and H. T. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited