OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1395–1402

Improving retinal image resolution with iterative weighted shift-and-add

Nizan Meitav and Erez N. Ribak  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1395-1402 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-resolution retinal imaging requires dilating the pupil, and therefore exposing more aberrations that blur the image. We developed an image processing technique that takes advantage of the natural movement of the eye to average out some of the high-order aberrations and to oversample the retina. This method was implemented on a long sequence of retinal images of subjects with normal vision. We were able to resolve the structures of the size of single cells in the living human retina. The improvement of resolution is independent of the acquisition method, as long as the image is not warped during scanning. Consequently, even better results can be expected by implementing this technique on higher-resolution images.

© 2011 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.6130) Vision, color, and visual optics : Spatial resolution

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: February 17, 2011
Revised Manuscript: April 23, 2011
Manuscript Accepted: May 14, 2011
Published: June 10, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Nizan Meitav and Erez N. Ribak, "Improving retinal image resolution with iterative weighted shift-and-add," J. Opt. Soc. Am. A 28, 1395-1402 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358–1363 (2007). [CrossRef]
  2. Y. P. Chui, H. Song, and S. A. Burns, “Adaptive optics imaging of the human cone photoreceptor distribution,” J. Opt. Soc. Am. A 25, 3021–3029 (2008). [CrossRef]
  3. R. C. Gonzalez and R. E. Woods, Digital Image Processing(Prentice Hall, 2007).
  4. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14, 47–57 (2004). [CrossRef]
  5. N. Nguyen, P. Milanfar, and G. Golub, “A computationally efficient superresolution image reconstruction algorithm,” IEEE Trans. Image Process. 10, 573–583 (2001). [CrossRef]
  6. M. Elad and Y. H. Or, “A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur,” IEEE Trans. Image Process. 10, 1187–1193(2001). [CrossRef]
  7. J. Liang, D. R. Williams, and D. T. Miller, “Super normal vision and high resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–3892 (1997). [CrossRef]
  8. B. Vohnsen, I. Iglesias, and P. Artal, “Directional imaging of the retinal cone mosaic,” Opt. Lett. 29, 968–970 (2004). [CrossRef] [PubMed]
  9. A. Roorda, F. Romero-Borja, W. J. Donnelly III, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [PubMed]
  10. C. J. Wolsley, K. J. Saunders, G. Silvestri, and R. S. Anderson, “Comparing mfERGs with estimates of cone density from in vivo imaging of the photoreceptor mosaic using a modified Heidelberg retina tomograph,” Vision Res. 50, 1462–1468 (2010). [CrossRef] [PubMed]
  11. D. Miller, D. Williams, G. Morris, and J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996). [CrossRef] [PubMed]
  12. R. J. Zawadzki, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005). [CrossRef] [PubMed]
  13. C. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14, 487–497 (2006). [CrossRef] [PubMed]
  14. H. Li, J. Lu, G. Shi, and Y. Zhang, “Tracking features in retinal images of adaptive optics confocal scanning laser ophthalmoscope using KLT-SIFT algorithm,” Biomedical Opt. Exp. 1, 31–40 (2010). [CrossRef]
  15. D. X. Hammer, D. R. Ferguson, C. E. Bigelow, N. Iftimia, T. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14, 3354–3367 (2006). [CrossRef] [PubMed]
  16. A. Dubra and Z. Harvey, “Registration of 2D images from fast scanning ophthalmic instruments,” in Biomedical Image Registration, Lecture Notes in Computer Science (Springer, 2010), Vol. 6204, pp. 60–71. [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  18. D. Siedlecki, H. Kasprzak, and B. K. Pierscionek, “Dynamic changes in corneal topography and its influence on the point-spread function of the eye,” Appl. Opt. 46, 1361–1366 (2007). [CrossRef] [PubMed]
  19. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  20. E. Ribak, “Astronomical imaging by filtered, weighted shift-and-add technique,” J. Opt. Soc. Am. A 3, 2069–2076 (1986). [CrossRef]
  21. C. Doucet, E. Habart, E. Pantin, C. Dullemond, P. O. Lagage, C. Pinte, G. Duchêne, and F. Ménard, “HD 97048: a closer look at the disk,” Astron. Astrophys. 470, 625–631 (2007). [CrossRef]
  22. D. Catlin and C. Dainty, “High-resolution imaging of the human retina with a Fourier deconvolution technique,” J. Opt. Soc. Am. A 19, 1515–1523 (2002). [CrossRef]
  23. S. Peleg, D. Keren, and L. Schweitzer, “Improving image resolution using subpixel motion,” Pattern Recog. Lett. 5, 223–226(1987). [CrossRef]
  24. M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP Graph. Models Image Process. 53, 231–239 (1991). [CrossRef]
  25. A. M. Tekalp, M. K. Ozkan, and M. I. Sezan, “High resolution image reconstruction from lower resolution image sequence and space-varying image restoration,” Proc. IEEE 3, 169–172 (1992).
  26. A. Wade and F. Fitzke, “A fast, robust pattern recognition asystem for low light level image registration and its application to retinal imaging,” Opt. Express 3, 190–197 (1998). [CrossRef] [PubMed]
  27. V. Nourrit, J. M. Bueno, B. Vohnsen, and P. Artal, “Nonlinear registration for scanned retinal images: application to ocular polarimetry,” Appl. Opt. 47, 5341–5347 (2008). [CrossRef] [PubMed]
  28. R. N. Bracewell, Fourier Analysis and Imaging (Springer, 2006).
  29. S. S. Gleason, M. A. Hunt, and W. B. Jatko, “Subpixel measurements of image features based on paraboloid surface fit,” Proc. SPIE 1386, 135–144 (1991). [CrossRef]
  30. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef] [PubMed]
  31. M. Dubbelman and V. D. Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001). [CrossRef] [PubMed]
  32. E. DeHoog and J. Schwiegerling, “Fundus camera systems: a comparative analysis,” Appl. Opt. 48, 221–228 (2009). [CrossRef] [PubMed]
  33. J. W. Goodman, Speckle Phenomena in Optics Theory and Applications (Roberts, 2006).
  34. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy,” Vis. Neurosci. 9, 169–180 (1991). [CrossRef]
  35. S. Marcos, R. Navarro, and P. Artal, “Coherent imaging of the cone mosaic in the living human eye,” J. Opt. Soc. Am. A 13, 897–905 (1996). [CrossRef]
  36. N. Meitav and E. N. Ribak (eribak@physics.technion.ac.il) are preparing a manuscript to be called “Measuring the fraction and spacing of closely-packed photoreceptors.”
  37. S. Marcos and R. Navarro, “Determination of the foveal cones spacing by ocular speckle interferometry: Limiting factors and acuity predictions,” J. Opt. Soc. Am. A 14, 731–740 (1997). [CrossRef]
  38. J. C. Christou, A. Roorda, and D. R. Williams, “Deconvolution of adaptive optics retinal images,” J. Opt. Soc. Am. A 21, 1393–1401(2004). [CrossRef]
  39. J. I. Yellott, “Spectral consequences of photoreceptor Sampling in the rhesus retina,” Science 221, 382–385 (1983). [CrossRef] [PubMed]
  40. D. R. Williams, “Topography of the foveal cone mosaic in the living human eye,” Vision Res. 28, 433–454 (1988). [CrossRef] [PubMed]
  41. D. R. Williams and N. J. Coletta, “Cone spacing and the visual resolution limit,” J. Opt. Soc. Am. A 4, 1514–1523(1987). [CrossRef] [PubMed]
  42. N. J. Coletta and D. R. Williams, “Psychophysical estimate of extra foveal cone spacing,” J. Opt. Soc. Am. A 4, 1503–1513 (1987). [CrossRef] [PubMed]
  43. P. Artal and R. Navarro, “High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry,” Opt. Lett. 14, 1098–1100 (1989). [CrossRef] [PubMed]
  44. A. M. Labin and E. N. Ribak, “Retinal glial cells enhance human vision acuity,” Phys. Rev. Lett. 104, 158102 (2010). [CrossRef] [PubMed]
  45. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood illumination camera for high speed retinal imaging,” Opt. Express 14, 4552–4569 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited