OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1403–1409

Mean focal length of an aberrated lens

Cosmas Mafusire and Andrew Forbes  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1403-1409 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We outline an approach for the calculation of the mean focal length of an aberrated lens and provide closed-form solutions that show that the focal length of the lens is dependent on the presence of defocus, x-astigmatism, and spherical aberration. The results are applicable to Gaussian beams in the presence of arbitrary-sized apertures. The theoretical results are confirmed experimentally, showing excellent agreement. As the final results are in algebraic form, the theory may readily be applied in the laboratory if the aberration coefficients of the lens are known.

© 2011 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(080.1005) Geometric optics : Aberration expansions

Original Manuscript: March 17, 2011
Revised Manuscript: April 20, 2011
Manuscript Accepted: April 21, 2011
Published: June 23, 2011

Cosmas Mafusire and Andrew Forbes, "Mean focal length of an aberrated lens," J. Opt. Soc. Am. A 28, 1403-1409 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. N. Mahajan, Aberration Theory Made Simple (SPIE, 1991). [CrossRef]
  2. V. N. Mahajan, Optical Imaging and Aberrations, Part I: Ray Geometrical Optics (SPIE, 1998).
  3. F. A. Jenkins and H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, 1976).
  4. A. E. Siegman, “Analysis of laser beam quality degradation caused by quartic phase aberrations,” Appl. Opt. 32, 5893-5091(1993). [CrossRef] [PubMed]
  5. J. A. Ruff and A. E. Siegman, “Measurement of beam quality degradation due to spherical aberration in a simple lens,” Opt. Quantum Electron. 26, 629-632 (1994). [CrossRef]
  6. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D 34, 2381-2395 (2001). [CrossRef]
  7. J. H. Sung, T. M. Jeong, S. K. Lee, T. J. Yu, I. W. Choi, and J. Lee, “Analysis of thermal aberrations in the power amplifiers of a 10 Hz 100 TW Ti:sapphire laser,” J. Korean Phys. Soc. 55, 495-500 (2009). [CrossRef]
  8. N. Hodgson and H. Weber, Resonator Fundamentals: Fundamentals, Advanced Concepts and Applications (Springer-Verlag, 1997), Ch. 13 and Ch. 15. [PubMed]
  9. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, 1999), Fig. 6.82, p. 389.
  10. P. A. Belanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196-198 (1991). [CrossRef] [PubMed]
  11. A. E. Siegman, “Defining the effective radius of curvature of a nonideal optical beam,” IEEE J. Quantum Electron. 27, 1146-1148 (1991). [CrossRef]
  12. J. Alda, J. Alonso, and E. Bernabeu, “Characterization of aberrated laser beams,” J. Opt. Soc. Am. A 14, 2737-2747 (1997). [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1998), pp. 517-553.
  14. G-M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008). [CrossRef]
  15. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  16. The term (1+δm0) prefixing Eq. has been added to correct for an error in .
  17. C. Mafusire and A. Forbes, CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa are preparing a manuscript to be called “Phase calibration of the Shack-Hartmann wavefront sensor using a phase only spatial light modulator.”
  18. A. Montmerle-Bonnefois, M. Gilbert, P.-Y. Thro, and J.-M. Weulersee, “Thermal lensing and spherical aberration in high-power transversally pumped laser rods,” Opt. Commun. 259, 223-235 (2006). [CrossRef]
  19. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modelling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831-1833 (1990). [CrossRef]
  20. J. Bourderionnet, A. Brignon, J.-P. Huignard, and R. Frey, “Influence of aberrations on fundamental mode at high power rod solid-state lasers,” Opt. Commun. 204, 299-310 (2002). [CrossRef]
  21. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89-153 (2006). [CrossRef]
  22. A. Forbes and L. R. Botha, “Physical optics modelling of intra-cavity thermal distortions in solid-state laser resonators,” Proc. SPIE 4768, 153-163 (2002). [CrossRef]
  23. E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped through a time-dependent analytical model,” Opt. Express 16, 11115-11123 (2008). [CrossRef] [PubMed]
  24. D. C. Hanna, C. G. Sawyers, and M. A. Yuratich, “Telescopic resonators for large-volume TEM00-mode operation,” Opt. Quantum Electron. 13, 493-507 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited