OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1462–1469

Double helical laser beams based on interfering first-order Bessel beams

Nicholas Barbieri, Matthew Weidman, Gregory Katona, Matthieu Baudelet, Zachary Roth, Eric Johnson, Georgios Siviloglou, Demetrios Christodoulides, and Martin Richardson  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1462-1469 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the generation of a nondiffracting double helical beam using axicons and ± 1 vortex phase plates in a common-path interferometric system. Using linear diffraction theory, a simple analytical expression describing beam propagation is shown to agree with both experiments and Fresnel-diffraction-based simulations. Experiments are performed using continuous laser light in addition to ultrafast pulses, demonstrating that the common-path arrangement and the diffraction theory work equally well for both cases.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1960) Diffraction and gratings : Diffraction theory
(050.1970) Diffraction and gratings : Diffractive optics
(260.1960) Physical optics : Diffraction theory
(260.3160) Physical optics : Interference

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 15, 2011
Manuscript Accepted: May 16, 2011
Published: June 27, 2011

Nicholas Barbieri, Matthew Weidman, Gregory Katona, Matthieu Baudelet, Zachary Roth, Eric Johnson, Georgios Siviloglou, Demetrios Christodoulides, and Martin Richardson, "Double helical laser beams based on interfering first-order Bessel beams," J. Opt. Soc. Am. A 28, 1462-1469 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin and J. J. Miceli, Jr., “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef] [PubMed]
  2. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun. 64, 491–494 (1987). [CrossRef]
  3. K. Ait-Ameur and F. Sanchez, “Gaussian beam conversion using an axicon,” J. Mod. Opt. 46, 1537–1548 (1999). [CrossRef]
  4. J. Pu, H. Zhang, and S. Nemoto, “Lens axicons illuminated by Gaussian beams for generation of uniform-axial intensity Bessel fields,” Opt. Eng. 39, 803–807 (2000). [CrossRef]
  5. R. Vasilyeu, A. Dudley, N. Khilo, and A. Forbes, “Generating superpositions of higher order Bessel beams,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FThB6.
  6. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef] [PubMed]
  7. M. M. Mendez Otero, G. C. Martinez Jimenez, M. L. Arroyo Carrasco, M. D. Iturbe Catillo, and E. Marti Panameno, “Generation of Bessel-Gauss beams by means of computer-generated holograms for Bessel beams,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2006), paper JWD129.
  8. W.-X. Cong and N.-X. Chen, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364(1998). [CrossRef]
  9. S. Orlov, K. Regelskis, V. Smilgevicius, and A. Stabinis, “Propagation of Bessel beams carrying optical vortices, “Opt. Commun. 209, 155–165 (2002). [CrossRef]
  10. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate, Opt. Commun. 112, 321–327 (1994). [CrossRef]
  11. J. Arlt and K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177, 297–301(2000). [CrossRef]
  12. V. Jarutis, R. Paskauskas, and A. Stabinis, “Focusing of Laguerre–Gaussian beams by axicon,” Opt. Commun. 184, 105–112 (2000). [CrossRef]
  13. S. Chavez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996). [CrossRef]
  14. S. Chavez-Cerda, M. A. Meneses-Nava, and J. Miguel Hickmann, “Interference of traveling nondiffracting beams,” Opt. Lett. 23, 1871–1873 (1998). [CrossRef]
  15. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, Z. Bouchal, and K. Dholakia, “Generation and control of multiple Bessel beams for optical micromanipulation,” Proc. SPIE 7038, 70380Q (2008). [CrossRef]
  16. T. Cizmar, V. Kollarova, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16, 14024–14035 (2008). [CrossRef] [PubMed]
  17. C. Paterson and R. Smith, “Helicon waves: propagation-invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996). [CrossRef]
  18. S. A. Baluyot and N. Hermosa II, “Intensity profiles and propagation of optical beams with bored helical phase,” Opt. Express 17, 16244–16254 (2009). [CrossRef] [PubMed]
  19. V. Jarutis, A. Matijosius, P. Di Trapani, and A. Piskarskas, “Spiraling zero-order Bessel beam,” Opt. Lett. 34, 2129–2131 (2009). [CrossRef] [PubMed]
  20. A. Matijosius, V. Jarutis, and A. Piskarskas, “Generation and control of the spiraling zero-order Bessel beam,” Opt. Express 18, 8767–8771 (2010). [CrossRef] [PubMed]
  21. S. A. Baluyot and N. Hermosa II, “Controllable rotation of optical beams with bored helical phases,” Appl. Opt. 49, 673–677 (2010). [CrossRef] [PubMed]
  22. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912–914 (2001). [CrossRef] [PubMed]
  23. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002). [CrossRef] [PubMed]
  24. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 6988–6993 (2010). [CrossRef] [PubMed]
  25. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, “Vortex formation in a stirred Bose-Einstein condensate,” Phys. Rev. Lett. 84, 806–809 (2000). [CrossRef] [PubMed]
  26. A. Greengard, Y. Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett. 31, 181–183 (2006). [CrossRef] [PubMed]
  27. S. R. P. Pavani, A. Greengard, and R. Piestun, “Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system,” Appl. Phys. Lett. 95, 021103 (2009). [CrossRef]
  28. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009). [CrossRef] [PubMed]
  29. C. Rotschild, M. Saraf, A. Barak, R. A. El-Ganainy, E. Lifshitz, D. N. Christodoulides, and M. Segev, “Complex nonlinear opto-fluidity,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (2008), paper CPDA4.
  30. T. Carmon, R. Uzdin, C. Pigier, Z. H. Musslimani, M. Segev, and A. Nepomnyashchy, “Rotating propeller solitons,” Phys. Rev. Lett. 87, 143901 (2001). [CrossRef] [PubMed]
  31. A. S. Desyatnikov and Y. S. Kivshar, “Rotating optical soliton clusters,” Phys. Rev. Lett. 88, 053901 (2002). [CrossRef] [PubMed]
  32. A. S. Desyatnikov, D. Buccoliero, M. R. Dennis, and Y. S. Kivshar, “Suppression of collapse for spiraling elliptic solitons,” Phys. Rev. Lett. 104, 053902 (2010). [CrossRef] [PubMed]
  33. A. Ya. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Angular momentum of a rotating light beam,” Opt. Commun. 249, 367–378 (2005). [CrossRef]
  34. M. Pitchumani, H. Hockel, W. Mohammed, and E. G. Johnson, “Additive lithography for fabrication of diffractive optics,” Appl. Opt. 41, 6176–6181 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited