OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1513–1523

Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions

Vadim Y. Soloviev and Simon R. Arridge  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1513-1523 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the problem of fluorescence lifetime optical tomographic imaging in a weakly scattering medium in the presence of highly scattering inclusions. We suggest an approximation to the radiative transfer equation, which results from the assumption that the transport coefficient of the scattering media differs by an order of magnitude for weakly and highly scattering regions. The image reconstruction algorithm is based on the variational framework and employs angularly selective intensity measurements. We present numerical simulation of light scattering in a weakly scattering medium that embeds highly scattering objects. Our reconstruction algorithm is verified by recovering optical and fluorescent parameters from numerically simulated datasets.

© 2011 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: April 1, 2011
Manuscript Accepted: May 12, 2011
Published: June 29, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Vadim Y. Soloviev and Simon R. Arridge, "Fluorescence lifetime optical tomography in weakly scattering media in the presence of highly scattering inclusions," J. Opt. Soc. Am. A 28, 1513-1523 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Shaw, D. A. Agard, Y. Hiraoko, and J. W. Sedat, “Tilted view reconstruction in optical microscopy, three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55, 101–110 (1989). [CrossRef] [PubMed]
  2. C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Appl. Opt. 31, 6247–6254 (1992). [CrossRef] [PubMed]
  3. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sorensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002). [CrossRef] [PubMed]
  4. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202, 175–81 (2003). [CrossRef] [PubMed]
  5. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13, 4210–4223 (2005). [CrossRef] [PubMed]
  6. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2, 1340–1350 (2011). [CrossRef] [PubMed]
  7. A. H. Andersen and A. C. Kak, “Digital ray tracing in two-dimensional refractive fields,” J. Acoust. Soc. Am. 72, 1593–1606(1982). [CrossRef]
  8. C. M. Vest, “Tomography for properties of materials that bend rays,” Appl. Opt. 24, 4089–4094 (1985). [CrossRef] [PubMed]
  9. A. H. Andersen, “Tomography transform and inverse in geometrical optics,” J. Opt. Soc. Am. A 4, 1385–1395 (1987). [CrossRef]
  10. A. D. Kim and J. B. Keller, “Light propagation in biological tissue,” J. Opt. Soc. Am. A 20, 92–98 (2003). [CrossRef]
  11. A. D. Kim and M. Moscoso, “Beam propagation in sharply peaked forward scattering media,” J. Opt. Soc. Am. A 21, 797–803 (2004). [CrossRef]
  12. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5, 45–47 (2007). [CrossRef] [PubMed]
  13. O. Lehtikangas, T. Tarvainen, V. Kolehmainen, A. Pulkkinen, S. R. Arridge, and J. P. Kaipio, “Finite element approximation of the Fokker–Planck equation for diffuse optical tomography,” J. Quant. Spectrosc. Radiat. Transfer 111, 1406–1417 (2010). [CrossRef]
  14. L. Florescu, V. A. Markel, and J. C. Schotland, “Single-scattering optical tomography,” Phys. Rev. E 79, 036607 (2009). [CrossRef]
  15. L. Florescu, V. A. Markel, and J. C. Schotland, “Single-scattering optical tomography: Simultaneous reconstruction of scattering and absorption,” Phys. Rev. E 81, 016602(2010). [CrossRef]
  16. J. McGinty, K. B. Tahir, R. Laine, C. B. Talbot, C. Dunsby, M. A. A. Neil, L. Quintana, J. Swoger, J. Sharpe, and P. M. W. French, “Fluorescence lifetime optical projection tomography,” J. Biophoton. 1, 390–394 (2008). [CrossRef]
  17. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35, 2732–2734 (2010). [CrossRef] [PubMed]
  18. V. Y. Soloviev and S. R. Arridge, “Optical tomography in weakly scattering media in the presence of highly scattering inclusions,” Biomed. Opt. Express 2, 440–451 (2011). [CrossRef] [PubMed]
  19. V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).
  20. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  21. S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25, 123010 (2009). [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968).
  24. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985). [CrossRef] [PubMed]
  25. S. Kaczmarz, “Approximate solution of system of linear equations,” Int. J. Control 57, 1269–1271 (1993). [CrossRef]
  26. V. Y. Soloviev, C. D’Andrea, P. S. Mohan, G. Valentini, R. Cubeddu, and S. R. Arridge, “Fluorescence lifetime optical tomography with discontinuous Galerkin discretisation scheme,” Biomed. Opt. Express 1, 998–1013 (2010). [CrossRef]
  27. M. Choulli and P. Stefanov, “Inverse scattering and inverse boundary value problems for the linear Boltzmann equation,” Commun. Partial Diff. Equ. 21, 763–785 (1996). [CrossRef]
  28. G. Bal, “Inverse transport theory and applications,” Inverse Probl. 25, 053001, (2009). [CrossRef]
  29. S. Arridge, V. Kolehmainen, and M. Schweiger, “Reconstruction and regularisation in optical tomography,” in Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Y.Censor, M.Jiang, and A.Louis, eds. (Pubblicazioni del Centro De Giorgi, 2008), pp. 1–18.
  30. P.S. Mohan, T. Tarvainen, M. J. Schweiger, A. Pulkkineand, and S. R. Arridge, “Variable order spherical harmonic expansion scheme for the radiative transport equation using finite elements,” J. Comp. Phys. , (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3091 KB)     
» Media 2: AVI (3054 KB)     
» Media 3: AVI (959 KB)     
» Media 4: AVI (981 KB)     
» Media 5: AVI (2847 KB)     
» Media 6: AVI (2810 KB)     
» Media 7: AVI (1381 KB)     
» Media 8: AVI (1408 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited