OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 7 — Jul. 1, 2011
  • pp: 1524–1530

Centroid propagation through optical systems with ABCD kernels and nonuniform or finite apertures

Jesús Lancis, Raúl Martínez-Cuenca, Jorge Ares, and Salvador Bará  »View Author Affiliations


JOSA A, Vol. 28, Issue 7, pp. 1524-1530 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001524


View Full Text Article

Enhanced HTML    Acrobat PDF (374 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

If the propagation of a light field can be satisfactorily described by a diffraction integral with an ABCD kernel, the propagation of its irradiance centroid is completely determined by the corresponding ABCD ray-transfer matrix in exactly the same way as if the centroid path were a conventional geometrical ray. However, potentially significant deviations from this geometrical propagation rule may arise in the presence of finite or nonuniform apertures truncating or otherwise modifying the input beam irradiance distribution.

© 2011 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(070.2590) Fourier optics and signal processing : ABCD transforms
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: April 14, 2011
Revised Manuscript: June 7, 2011
Manuscript Accepted: June 8, 2011
Published: June 29, 2011

Citation
Jesús Lancis, Raúl Martínez-Cuenca, Jorge Ares, and Salvador Bará, "Centroid propagation through optical systems with ABCD kernels and nonuniform or finite apertures," J. Opt. Soc. Am. A 28, 1524-1530 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-7-1524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  2. F. Merkle, “'Adaptive optics,” in International Trends in Optics (Academic, 1991), pp. 375–390.
  3. J. Primot, G. Rousset, and J. C. Fontanella, “Deconvolution from wavefront sensing: a new technique for compensating turbulence-degraded images,” J. Opt. Soc. Am. A 7, 1598–1608 (1990). [CrossRef]
  4. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, “Atmospheric structure function measurements with a Shack–Hartmann wavefront sensor,” Opt. Lett. 17, 1737–1739 (1992). [CrossRef] [PubMed]
  5. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, “Use of a Shack–Hartmann wavefront sensor to measure deviations from a Kolmogorov phase spectrum,” Opt. Lett. 20, 2460–2462 (1995). [CrossRef] [PubMed]
  6. E. E. Silbaugh, B. M. Welsh, and M. C. Roggemann, “Characterization of atmospheric turbulence phase statistics using wavefront slope measurements,” J. Opt. Soc. Am. A 13, 2453–2460(1996). [CrossRef]
  7. C. Rao, W. Jiang, and N. Ling, “Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack–Hartmann wavefront sensor,” Opt. Lett. 24, 1008–1010(1999). [CrossRef]
  8. T. Kohno and S. Tanaka, “Figure measurement of concave mirror by fiber-grating Hartmann test,” Opt. Rev. 1, 118–120 (1994). [CrossRef]
  9. N. S. Prasad, S. M. Doyle, and M. K. Giles, “Collimation and beam alignment: testing and estimation using liquid-crystal televisions,” Opt. Eng. 35, 1815–1819 (1996). [CrossRef]
  10. H. J. Tiziani and J. H. Chen, “Shack–Hartmann sensor for fast infrared wavefront testing,” J. Mod. Opt. 44, 535–541 (1997). [CrossRef]
  11. G. Artzner, “Aspherical wavefront measurements: Shack–Hartmann numerical and practical experiments,” Pure Appl. Opt. 7, 435–448 (1998). [CrossRef]
  12. J. Pfund, N. Lindlein, J. Schwider, R. Burow, T. Blumel, and K.-E. Elssner, “Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack–Hartmann sensor,” Opt. Lett. 23, 742–744 (1998). [CrossRef]
  13. J. Ares, T. Mancebo, and S. Bará, “Position and displacement sensing with Shack–Hartmann wavefront sensors,” Appl. Opt. 39, 1511–1520 (2000). [CrossRef]
  14. J. Liang, B. Grimm, S. Goelz, and J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wavefront sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994). [CrossRef]
  15. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997). [CrossRef]
  16. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  17. R. Navarro and M. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye,” Optom. Vision Sci. 74, 540–547 (1997). [CrossRef]
  18. R. Navarro, E. Moreno, and C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998). [CrossRef]
  19. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  20. V. I. Tatarskii, The Propagation of Waves in the Turbulent Atmosphere (Nauka, 1967), pp. 385–390 (in Russian).
  21. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am. 72, 1199–1209(1982). [CrossRef]
  22. S. Bará, “Measuring eye aberrations with Hartmann–Shack wavefront sensors: Should the irradiance distribution across the eye pupil be taken into account?” J. Opt. Soc. Am. A 20, 2237–2245 (2003). [CrossRef]
  23. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, “Comparison of centroid computation algorithms in a Shack–Hartmann sensor,” Mon. Not. R. Astron. Soc. 371, 323–336 (2006) [CrossRef]
  24. R. Irwan and R. G. Lane, “Analysis of optimal centroid estimation applied to Shack–Hartmann sensing,” Appl. Opt. 38, 6737–6743 (1999). [CrossRef]
  25. D. A. Montera, B. M. Welsh, M. C. Roggemann, and D. W. Ruck, “Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation,” Appl. Opt. 35, 5747–5757 (1996). [CrossRef] [PubMed]
  26. J.-M. Ruggiu, C. J. Solomon, and G. Loos, “Gram–Charlier matched filter for Shack–Hartmann sensing at low light levels,” Opt. Lett. 23, 235–237 (1998). [CrossRef]
  27. J. Arines and J. Ares, “Minimum variance centroid thresholding,” Opt. Lett. 27, 497–499 (2002). [CrossRef]
  28. C. Leroux and C. Dainty, “Estimation of centroid positions with a matched-filter algorithm: relevance for aberrometry of the eye,” Opt. Express 18, 1197–1206 (2010). [CrossRef] [PubMed]
  29. P. Ehrenfest, “Notes on the approximate validity of quantum mechanics,” Z. Phys. 45, 455–457 (1927) (in German). [CrossRef]
  30. R. J. Cook, “Beam wander in a turbulent medium: an application of Ehrenfest’s theorem,” J. Opt. Soc. Am. 65, 942–948 (1975). [CrossRef]
  31. J. Ares, J. Arines, and S. Bará, “Finite-area centroid propagation in homogeneous media and range of validity of the optical Ehrenfest's theorem,” Opt. Commun. 284, 2455–2459 (2011). [CrossRef]
  32. A. E. Siegman, “Complex paraxial wave optics,” in Lasers(University Science Books, 1986), Chap. 20, pp. 777–782.
  33. C. Palma and V. Bagini, “Extension of the Fresnel transform to ABCD systems,” J. Opt. Soc. Am. A 14, 1774–1779 (1997). [CrossRef]
  34. T. L. Kelly, P. J. Veitch, A. F. Brooks, and J. Munch, “Accurate and precise optical testing with a differential Hartmann wavefront sensor,” Appl. Opt. 46, 861–866 (2007). [CrossRef] [PubMed]
  35. M. Born and E. Wolf, “Appendix IV,” in Principles of Optics(Pergamon, 1987), pp. 755–759.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited