OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1578–1585

Components of purity of a Mueller matrix

José J. Gil  »View Author Affiliations


JOSA A, Vol. 28, Issue 8, pp. 1578-1585 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001578


View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The degree of polarimetric purity of a Mueller matrix, also called “depolarization index” [ Opt. Acta 33, 185 (1986)] is expressed as a quadratic average of two contributions of different nature. The contribution due to the polarizance and diattenuation properties is given by a unique parameter called “degree of polarizance,” and the complementary contribution due to nonpolarizing properties is given by a parameter called “degree of spherical purity.” These two intrinsic quantities are useful in order to analyze the sources of the polarimetric purity of a material sample whose Mueller matrix has been measured and provide criteria for the classification of Mueller matrices.

© 2011 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(260.0260) Physical optics : Physical optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: April 5, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 25, 2011
Published: July 11, 2011

Citation
José J. Gil, "Components of purity of a Mueller matrix," J. Opt. Soc. Am. A 28, 1578-1585 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-8-1578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Gil, “Determinación de parámetros de polarización en representación matricial. Contribución teórica y realización de un dispositivo automático,” Ph.D. thesis, Facultad de Ciencias, Universidad de Zaragoza, 1983. Available from http://www.pepegil.es/PhD-Thesis-JJ-Gil.pdf.
  2. J. J. Gil and E. Bernabéu, “A depolarization criterion for Mueller matrices,” Opt. Acta 32, 259–261 (1985). [CrossRef]
  3. J. J. Gil and E. Bernabéu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986). [CrossRef]
  4. S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995). [CrossRef]
  5. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). [CrossRef]
  6. J. J. Gil, “Characteristic properties of Mueller matrices,” J. Opt. Soc. Am. A 17, 328–334 (2000). [CrossRef]
  7. J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira, “Generalized polarization algebra,” Monog. Sem. Mat. G. de Galdeano 31, 161–167 (2004). Available from http://www.unizar.es/galdeano/actas_pau/PDFVIII/pp161-167.pdf.
  8. R. A. Chipman, “Depolarization index and the average degree of depolarization,” Appl. Opt. 44, 2490–2495 (2005). [CrossRef] [PubMed]
  9. A. Aiello and J. P. Woerdman, “Physical bounds to the entropy-depolarization relation in random light scattering,” Phys. Rev. Lett. 94, 090406 (2005). [CrossRef] [PubMed]
  10. R. Espinosa-Luna and E. Bernabéu, “On the Q(M) depolarization metric,” Opt. Commun. 277, 256–258 (2007). [CrossRef]
  11. J. J. Gil, “Polarimetric characterization of light and media. Physical quantities involved in polarimetric phenomena,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  12. R. Espinosa-Luna, E. Bernabéu, and G. Atondo-Rubio, “Q(M) and the depolarization index scalar metrics,” Appl. Opt. 47, 1575–1580 (2008). [CrossRef] [PubMed]
  13. J. Praks, E. C. Koeniguer, and M. T. Hallikainen, “Alternatives to target entropy and alpha angle in SAR polarimetry,” IEEE Trans. Geosci. Remote Sens. 47, 2262–2274 (2009). [CrossRef]
  14. R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabéu, and S. Hinojosa-Ruiz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010). [CrossRef]
  15. R. Ossikovski, “Alternative depolarization criteria for Mueller matrices,” J. Opt. Soc. Am. A 27, 808–814 (2010). [CrossRef]
  16. I. San Jose and J. J. Gil, “Invariant indices of polarimetric purity. Generalized indices of purity for nxn covariance matrices,” Opt. Commun. 284, 38–47 (2011). [CrossRef]
  17. R. Ossikovski, “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009). [CrossRef]
  18. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994). [CrossRef]
  19. J. J. Gil and E. Bernabéu, “Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from its Mueller matrix,” Optik 76, 67–71 (1987).
  20. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Conditions for polarization elements to be dichroic and birefringent,” J. Opt. Soc. Am. A 22, 1447–1452 (2005). [CrossRef]
  21. S. N. Savenkov, O. I. Sydoruk, and R. S. Muttiah, “Eigenanalysis of dichroic, birefringent, and degenerate polarization elements: a Jones-calculus study,” Appl. Opt. 46, 6700–6709 (2007). [CrossRef] [PubMed]
  22. T. Tudor, “Dirac-algebraic approach to the theory of device operators in polarization optics,” J. Opt. Soc. Am. A 20728–732 (2003). [CrossRef]
  23. T. Tudor, “Generalized observables in polarization optics,” J. Phys. A 36, 9577–9590 (2003). [CrossRef]
  24. T. Tudor, “Non-hermitian polarizers: A biorthogonal analysis,” J. Opt. Soc. Am. A 23, 1513–1522 (2006). [CrossRef]
  25. R. Ossikovski, “Canonical forms of depolarizing Mueller matrices,” J. Opt. Soc. Am. A 27, 123–130 (2010). [CrossRef]
  26. Z-F Xing, “On the deterministic and non-deterministic Mueller matrix,” J. Mod. Opt. 39, 461–484 (1992). [CrossRef]
  27. C. R. Givens and A. B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices,” J. Mod. Opt. 40, 471–481 (1993). [CrossRef]
  28. R. C. Jones, “A new calculus for the treatment of optical systems I. Description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  29. P. S. Theocaris and E. E. Gdoutos, Matrix Theory of Photoelasticity (Springer-Verlag, 1979), Chap. 4.
  30. S. R. Cloude, “Group theory and polarization algebra,” Optik 75, 26–36 (1986).
  31. S. R. Cloude, “Conditions for the physical realizability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989).
  32. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix,” J. Mod. Opt. 45, 955–987 (1998). [CrossRef]
  33. A. V. Gopala Rao, K. S. Mallesh, and Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. II. Necessary and sufficient conditions for Jones derived Mueller matrices,” J. Mod. Opt. 45, 989–999 (1998). [CrossRef]
  34. G. R. Bird and W. A. Shurcliff, “Pile-of-plates polarizers for the infrared: improvement in analysis and design,” J. Opt. Soc. Am. 49, 235–237 (1959). [CrossRef]
  35. W. A. Shurcliff, Polarized Light (Harvard University, 1962).
  36. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media,” J. Opt. Soc. Am. A 4, 433–437 (1987). [CrossRef]
  37. B. DeBoo, J. Sasian, and R. Chipman, “Degree of polarization surfaces and maps for analysis of depolarization,” Opt. Express 12, 4941–4958 (2004). [CrossRef] [PubMed]
  38. C. Ferreira, I. San José, J. J. Gil, and J. M. Correas, “Geometric modeling of polarimetric transformations,” Monog. Sem. Mat. G. de Galdeano 33, 115–119 (2006). Available from www.unizar.es/galdeano/actas_pau/PDFIX/FerSanGilCor05.pdf.
  39. S.-Y. Lu and R. A. Chipman, “Mueller matrices and the degree of polarization,” Opt. Commun. 146, 11–14 (1998). [CrossRef]
  40. Sudha and A. V. Gopala Rao, “Polarization elements: a group-theoretical study,” J. Opt. Soc. Am. A 18, 3130–3134(2001). [CrossRef]
  41. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics,” J. Mod. Opt. 41, 1903–1915 (1994). [CrossRef]
  42. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34, 5072–5088(1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited