OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1662–1667

Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer

Haiqing Xu, Hongjian Li, Zhimin Liu, Suxia Xie, Xin Zhou, Xiao Peng, and Xiuke Xu  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1662-1667 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (899 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of symmetry breaking on plasmonic properties of one nanotube and three types of nanotube dimers are numerically investigated. It is found that increasing the coaxial offset can result in redshifting of the transmission spectra and the existence of more peaks in the nanoegglike structures, while the nanocuplike structures present the opposite and more complex behaviors. We also study the combined effects of coaxial offset and gap size. The results show that the nanoegglike spectra redshift with the increase of coaxial offset and the decrease of the gap size, and the nanocuplike spectra display opposite behaviors. The asymmetrical distribution of surface charges demonstrates that the hybridization of dipolar and multipolar plasmon polaritons exist in the cross section of these structures, and the electric field adjacent to the thinner side enhances greatly. The proposed nanostructures may have great potential applications in various near-field optics.

© 2011 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

Original Manuscript: April 8, 2011
Manuscript Accepted: June 20, 2011
Published: July 20, 2011

Haiqing Xu, Hongjian Li, Zhimin Liu, Suxia Xie, Xin Zhou, Xiao Peng, and Xiuke Xu, "Effects of symmetry breaking on plasmon resonance in a noncoaxial nanotube and nanotube dimer," J. Opt. Soc. Am. A 28, 1662-1667 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photon. 1641–648 (2007). [CrossRef]
  2. M. W. Knight and N. J. Halas, “Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit,” New J. Phys. 10, 105006 (2008). [CrossRef]
  3. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006). [CrossRef] [PubMed]
  4. J. B. Lassiter,. M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. 9, 4326–4332 (2009). [CrossRef] [PubMed]
  5. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009). [CrossRef] [PubMed]
  6. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008). [CrossRef] [PubMed]
  7. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett. 9, 1255–1259 (2009). [CrossRef] [PubMed]
  8. M. Cortie and M. Ford, “A plasmon-induced current loop in gold semi-shells,” Nanotechnology 18, 235704 (2007). [CrossRef]
  9. J. Ye, L. Lagae, G. Maes, G. Borghs, and P. V. Dorpe1, “Symmetry breaking induced optical properties of gold open shell nanostructures,” Opt. Express 17, 23765–23771 (2009). [CrossRef]
  10. Y. Hu, S. J. Noelck, and R. A. Drezek, “Symmetry breaking in gold-silica-gold multilayer nanoshells,” ACS Nano 4, 1521–1528 (2010). [CrossRef] [PubMed]
  11. B. Yun, Z. Wang, G. Hu, and Y. Cui, “Theoretical studies on the near field properties of non-concentric core–shell nanoparticle dimmers,” Opt. Commun. 283, 2947–2952 (2010). [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  13. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  14. C. Oubre and P. Nordlander, “Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method,” J. Phys. Chem. B 108, 17740–1774 (2004). [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metal Al, Co, Cu, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  16. Y. Wu and P. Nordlander, “Plasmon hybridization in nanoshells with a nonconcentric core,” J. Chem. Phys. 125, 124708(2006). [CrossRef] [PubMed]
  17. A. Moradi, “Plasmon hybridization in metallic nanotubes with a nonconcentric core,” Opt. Commun. 282, 3368–3370 (2009). [CrossRef]
  18. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited