## Discrete linear canonical transforms based on dilated Hermite functions |

JOSA A, Vol. 28, Issue 8, pp. 1695-1708 (2011)

http://dx.doi.org/10.1364/JOSAA.28.001695

Enhanced HTML Acrobat PDF (1452 KB)

### Abstract

Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time–frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time–frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.

© 2011 Optical Society of America

**OCIS Codes**

(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

(070.2580) Fourier optics and signal processing : Paraxial wave optics

(070.2590) Fourier optics and signal processing : ABCD transforms

(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

**ToC Category:**

Fourier Optics and Signal Processing

**History**

Original Manuscript: April 19, 2011

Revised Manuscript: June 10, 2011

Manuscript Accepted: June 11, 2011

Published: July 27, 2011

**Citation**

Soo-Chang Pei and Yun-Chiu Lai, "Discrete linear canonical transforms based on dilated Hermite functions," J. Opt. Soc. Am. A **28**, 1695-1708 (2011)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-8-1695

Sort: Year | Journal | Reset

### References

- K. B. Wolf, “Canonical transforms,” in Integral Transforms in Science and Engineering, K.B.Wolf, ed. (Plenum, 1979), pp. 381–416.
- H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2000).
- S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]
- S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994). [CrossRef] [PubMed]
- L. M. Bernardo, “ABCD matrix formalism of fractional Fourier optics,” Opt. Eng. 35, 732–740 (1996). [CrossRef]
- M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979). [CrossRef]
- A. Papoulis, “Pulse compression, fiber communications, and diffraction: a unified approach,” J. Opt. Soc. Am. 11, 3–13 (1994). [CrossRef]
- D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Commun. 126, 207–212 (1996). [CrossRef]
- C. Palma and V. Bagini, “Extension of the Fresnel transform to ABCD systems,” J. Opt. Soc. Am. A 14, 1774–1779 (1997). [CrossRef]
- S. C. Pei and J. J. Ding, “Closed-form discrete fractional and affine Fourier transforms,” IEEE Trans. Signal Process. 48, 1338–1353 (2000). [CrossRef]
- J. Hua, L. Liu, and G. Li, “Extended fractional Fourier transforms,” J. Opt. Soc. Am. A 14, 3316–3322 (1997). [CrossRef]
- M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation: Lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982). [CrossRef]
- M. J. Bastiaans, “Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems,” Optik 82, 173–181 (1989).
- U. Gopinathan, G. Situ, T. J. Naughton, and J. T. Sheridan, “Noninterferometric phase retrieval using a fractional Fourier system,” J. Opt. Soc. Am. 25, 108–115 (2008). [CrossRef]
- M. J. Bastiaans and K. B. Wolf, “Phase reconstruction from intensity measurements in linear systems,” J. Opt. Soc. Am. 20, 1046–1049 (2003). [CrossRef]
- B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32–36 (1997). [CrossRef]
- S. C. Pei and J. J. Ding, “Simplified fractional Fourier transforms,” J. Opt. Soc. Am. 17, 2355–2367 (2000). [CrossRef]
- J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd ed. (Springer-Verlag, 1999).
- K. K. Sharma, “Fractional Laplace transform,” Signal Image Video Process. 4, 377–379 (2009). [CrossRef]
- B. M. Hennelly and J. T. Sheridan, “Fast numerical algorithm for the linear canonical transform,” J. Opt. Soc. Am. A 22, 928–937 (2005). [CrossRef]
- A. Stern, “Sampling of linear canonical transformed signals,” Signal Process. 86, 1421–1425 (2006). [CrossRef]
- H. M. Ozaktas, A. Koç, I. Sari, and M. A. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006). [CrossRef] [PubMed]
- B.-Z. Li, R. Tao, and Y. Wang, “New sampling formulae related to linear canonical transform,” Signal Process. 87, 983–990 (2007). [CrossRef]
- A. Koç, H. M. Ozaktas, C. Candan, and M. A. Kutay, “Digital computation of linear canonical transforms,” IEEE Trans. Signal Process. 56, 2383–2394 (2008). [CrossRef]
- J. J. Healy and J. T. Sheridan, “Sampling and discretization of the linear canonical transform,” Signal Process. 89, 641–648 (2009). [CrossRef]
- A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010). [CrossRef]
- A. Koç, H. M. Ozaktas, and L. Hesselink, “Fast and accurate algorithm for the computation of complex linear canonical transforms,” J. Opt. Soc. Am. A 27, 1896–1908 (2010). [CrossRef]
- L. I. Bluestein, “A linear filtering approach to the computation of the discrete Fourier transform,” IEEE Trans. Audio Electroacoust. AU-18, 451–455 (1970). [CrossRef]
- K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
- R. Simon and N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998). [CrossRef]
- S. C. Pei and J. J. Ding, “Eigenfunctions of linear canonical transform,” IEEE Trans. Signal Process. 50, 11–26 (2002). [CrossRef]
- B. W. Dickinson and K. Steiglitz, “Eigenvectors and functions of the discrete Fourier transform,” IEEE Trans. Acoust. Speech Signal Process. 30, 25–31 (1982). [CrossRef]
- F. A. Grünbaum, “The eigenvectors of the discrete Fourier transform: a version of the Hermite functions,” J. Math. Anal. Appl. 88, 355–363 (1982). [CrossRef]
- C. Candan, M. A. Kutay, and H. M. Ozaktas, “The discrete fractional Fourier transform,” IEEE Trans. Signal Process. 48, 1329–1337 (2000). [CrossRef]
- S. C. Pei, W. L. Hsue, and J. J. Ding, “Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices,” IEEE Trans. Signal Process. 54, 3815–3828 (2006). [CrossRef]
- C. Candan, “On higher order approximations for Hermite-Gaussian functions and discrete fractional Fourier transforms,” IEEE Signal Process. Lett. 14, 699–702 (2007). [CrossRef]
- S. C. Pei and Y. C. Lai, “Signal scaling by centered discrete dilated Hermite functions,” IEEE Trans. Signal Process. (submitted for publication).
- D. H. Mugler, S. Clary, and Y. Wu, “Discrete Hermite expansion of digital signals: applications to ECG signals,” in Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop and 2nd Signal Processing Education Workshop (IEEE, 2002), pp. 262–267. [CrossRef]
- T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distribution—a tool for time-frequency signal analysis, part I: continuous-time signals,” Philips J. Res. 35, 217–250 (1980).
- S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications (Prentice-Hall, 1996).
- E. P. Wigner, “On the quantum correlation for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
- R. L. Allen and D. W. Mills, Signal Analysis: Time, Frequency, Scale, and Structure (Wiley-Interscience, 2004).
- V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241–265 (1980). [CrossRef]
- L. B. Almeida, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084–3091 (1994). [CrossRef]
- F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981). [CrossRef]
- S. C. Pei, J. J. Ding, W. L. Hsue, and K. W. Chang, “Generalized commuting matrices and their eigenvectors for DFTs, offset DFTs, and other periodic operations,” IEEE Trans. Signal Process. 56, 3891–3904 (2008). [CrossRef]
- V. Strassen, “Gaussian elimination is not optimal,” Numer. Math. 13, 354–356 (1969). [CrossRef]
- P. D’Alberto and A. Nicolau, “Adaptive Winograd’s matrix multiplications,” ACM Trans. Math. Softw. 36, 1–23 (2009). [CrossRef]
- G. Rünger and M. Schwind, “Fast recursive matrix multiplication for multi-core architectures,” Procedia Comp. Science 1, 67–76 (2010). [CrossRef]
- R. Raz, “On the complexity of matrix product,” in Proceedings of the 34th Annual ACM Symposium on Theory of Computing (ACM, 2002), pp. 144–151.
- H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141–2150 (1996). [CrossRef]
- “MIT/BIH database 100,” http://www.physionet.org/physiobank/database/mitdb/.
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1970).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.