OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1716–1720

Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram

G. H. Yuan, S. B. Wei, and X.-C. Yuan  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1716-1720 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (554 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an approach to the generation of nondiffracting quasi-circularly polarized beams by a highly focusing azimuthally polarized beam using an amplitude modulated spiral phase hologram. Numerical verifications are implemented in the calculation of the electromagnetic fields and Poynting vector field near the focus based on the vector diffraction theory, and the polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the electric field, magnetic field, and Poynting vector field can simultaneously be uniform and nondiverging over a relatively long axial range of 7.23 λ . In the transverse plane, the ellipticity and azimuthal angle of the local polarization ellipse varies from point to point. No polarization singularity and phase singularity are found at the beam center, which makes the bright spot possible.

© 2011 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(140.3300) Lasers and laser optics : Laser beam shaping
(230.6120) Optical devices : Spatial light modulators
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: May 4, 2011
Revised Manuscript: July 1, 2011
Manuscript Accepted: July 2, 2011
Published: July 27, 2011

G. H. Yuan, S. B. Wei, and X.-C. Yuan, "Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram," J. Opt. Soc. Am. A 28, 1716-1720 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photon. 2, 501–505 (2008). [CrossRef]
  2. H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006). [CrossRef]
  3. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003). [CrossRef] [PubMed]
  4. M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997). [CrossRef]
  5. L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007). [CrossRef] [PubMed]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006). [CrossRef] [PubMed]
  7. Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomorgraphy,” J. Opt. 13, 055301 (2011). [CrossRef]
  8. M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006). [CrossRef] [PubMed]
  9. A. Flores, M. R. Wang, and J. J. Yang, “Achromatic hybrid refractive-diffractive lens with extended depth of focus,” Appl. Opt. 43, 5618–5630 (2004). [CrossRef] [PubMed]
  10. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  11. K. Huang, P. Shi, X. L. Kang, X. B. Zhang, and Y. P. Li, “Design of DOE for generating a needle of a strong longitudinally polarized field,” Opt. Lett. 35, 965–967 (2010). [CrossRef] [PubMed]
  12. J. Lin, K. Yin, Y. D. Li, and J. B. Tan, “Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation,” Opt. Lett. 36, 1185–1187 (2011). [CrossRef] [PubMed]
  13. E. J. Botcherby, R. Juskaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268, 253–260 (2006). [CrossRef]
  14. H. F. Wang and F. X. Gan, “Phase-shifting apodizers for increasing focal depth,” Appl. Opt. 41, 5263–5266 (2002). [CrossRef] [PubMed]
  15. B. Tian and P. X. Pu, “Tight focusing of a double-ring-shaped azimuthally polarized beam,” Opt. Lett. 36, 2014–2016(2011). [CrossRef] [PubMed]
  16. X. Hao, C. F. Kuang, T. T. Wang, and X. Liu, “Phase encoding for sharper focus of the azimuthally polarized beam,” Opt. Lett. 35, 3928–3930 (2010). [CrossRef] [PubMed]
  17. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt. 38, 5004–5013 (1999). [CrossRef]
  18. J. Chen, X.-C. Yuan, X. Zhao, Z. L. Fang, and S. W. Zhu, “Generalized approach to modifying optical vortices with suppressed sidelobes using Bessel-like functions,” Opt. Lett. 34, 3289–3291(2009). [CrossRef] [PubMed]
  19. K. J. Moh, X.-C. Yuan, J. Bu, R. E. Burge, and Bruce Z. Gao, “Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams,” Appl. Opt. 46, 7544–7551(2007). [CrossRef] [PubMed]
  20. B. Richard and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplannatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  21. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87(2000). [CrossRef] [PubMed]
  22. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19, 427–429 (1994). [CrossRef] [PubMed]
  23. P. L. Greene and D. G. Hall, “Diffraction characteristics of the azimuthal Bessel-Gauss beam,” J. Opt. Soc. Am. A 13, 962–966(1996). [CrossRef]
  24. E. Collet, Polarized Light (Dekker, 1993), Chap 4, pp. 33–66.
  25. Z. Bomzon, M. Gu, and J. Shamir, “Angular momentum and geometrical phases in tight-focused circularly polarized plane waves,” Appl. Phys. Lett. 89, 241104 (2006). [CrossRef]
  26. M. V. Berry, “The adiabatic phase and Pancharatnam’s phase for polarized light,” J. Mod. Opt. 34, 1401–1407 (1987). [CrossRef]
  27. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited