OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 8 — Aug. 1, 2011
  • pp: 1741–1746

Experimental comparison of autodyne and heterodyne laser interferometry using an Nd : YVO 4 microchip laser

Olivier Jacquin, Eric Lacot, Wilfried Glastre, Olivier Hugon, and Hugues Guillet de Chatellus  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1741-1746 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using an Nd : YVO 4 microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer. LOFI interferometry is demonstrated to show higher performance than heterodyne interferometry for a wide range of laser powers and detection levels of noise. The experimental results are in good agreement with the theoretical predictions.

© 2011 Optical Society of America

OCIS Codes
(280.3420) Remote sensing and sensors : Laser sensors
(110.3175) Imaging systems : Interferometric imaging

ToC Category:
Imaging Systems

Original Manuscript: May 10, 2011
Revised Manuscript: June 17, 2011
Manuscript Accepted: June 24, 2011
Published: July 28, 2011

Olivier Jacquin, Eric Lacot, Wilfried Glastre, Olivier Hugon, and Hugues Guillet de Chatellus, "Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO4 microchip laser," J. Opt. Soc. Am. A 28, 1741-1746 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T.Yoshizawa, ed., Handbook of Optical Metrology: Principles and Applications (CRC Press, 2009). [CrossRef]
  2. K. Otsuka, “Effects of external perturbations on LiNdP4O12 lasers,” IEEE J. Quantum Electron. 15, 655–663 (1979). [CrossRef]
  3. K. Otsuka, “Self-mixing thin-slice solid-state laser metrology,” Sensors 11, 2195–2245 (2011). [CrossRef]
  4. K. Otsuka, “Highly sensitive measurement of Doppler-shift with a microchip solid-state laser,” Jpn. J. Appl. Phys. 31, L1546–L1548 (1992). [CrossRef]
  5. S. Okamoto, H. Takeda, and F. Kannari, “Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser,” Rev. Sci. Instrum. 66, 3116–3120 (1995). [CrossRef]
  6. R. Kawai, Y. Asakawa, and K. Otsuka, “Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diode-pumped microchip LiNdP4O12 lasers,” IEEE Photon. Technol. Lett. 11, 706–708 (1999). [CrossRef]
  7. S. Suddo, T. Ohtomo, Y. Takahascvhi, T. Oishi, and K. Otsuka, “Determination of velocity of self-mobile phytoplankton using a self thin-slice solid-state laser,” Appl. Opt. 48, 4049–4055(2009). [CrossRef]
  8. K. Otsuka, K. Abe, J. Y. Ko, and T. S. Lim, “Real-time nanometer vibration measurement with self-mixing microchip solid-state laser,” Opt. Lett. 27, 1339–1341 (2002). [CrossRef]
  9. V. Muzet, E. Lacot, O. Hugon, and Y. Gaillard, “Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures,” Proc. SPIE 5856, 793–799 (2005). [CrossRef]
  10. E. Lacot and O. Hugon, “Phase-sensitive laser detection by frequency-shifted optical feedback,” Phys. Rev. A 70, 053824(2004). [CrossRef]
  11. H. Gilles, S. Girard, M. Laroche, and A. Belarouci, “Near-field amplitude and phase measurements using heterodyne optical feedback on solid-state lasers,” Opt. Lett. 33, 1–3 (2008). [CrossRef]
  12. S. Blaize, B. Bérenguier, I. Stéfanon, A. Bruyant, G. Lerondel, P. Royer, O. Hugon, O. Jacquin, and E. Lacot, “Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry,” Opt. Express 16, 11718–11726 (2008). [CrossRef] [PubMed]
  13. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999). [CrossRef]
  14. A. Witomski, E. Lacot, O. Hugon, and O. Jacquin, “Synthetic aperture laser optical feedback imaging using galvanometric scanning,” Opt. Lett. 31, 3031–3033 (2006). [CrossRef] [PubMed]
  15. O. Hugon, I. A. Paun, C. Ricard, B. van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008). [CrossRef]
  16. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A 64, 043815(2001). [CrossRef]
  17. E. Lacot, O. Jacquin, G. Roussely, O. Hugon, and H. Guillet de Chatellus, “Comparative study of autodyne and heterodyne laser interferometry for imaging,” J. Opt. Soc. Am. A 27, 2450–2458(2010). [CrossRef]
  18. M. I. Kolobov, L. Davidovich, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993). [CrossRef] [PubMed]
  19. A. Bramati, J. P. Hermier, V. Jost, E. Giacobino, L. Fulbert, E. Molva, and J. J. Aubert, “Effects of pump fluctuations on intensity noise of Nd:YVO4 microchip lasers,” Eur. Phys. J. D 6, 513–521 (1999). [CrossRef]
  20. J. J. Zaykowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14, 24–26 (1989). [CrossRef]
  21. M. Laroche, C. Bartolacci, G. Lesueur, H. Gilles, and S. Girard, “Serrodyne optical frequency shifting for heterodyne self-mixing in a distributed-feedback fiber laser,” Opt. Lett. 33, 2746–2748(2008). [CrossRef] [PubMed]
  22. Y. I. Khanin, Principles of Laser Dynamics (Elsevier, 1995).
  23. V. Jost, “Réduction du bruit dans les lasers: Application aux lasers à semi-conducteur et aux minilasers solides,” http://tel.archives-ouvertes.fr/docs/00/06/08/22/PDF/1997JOST.pdf, p. 54.
  24. W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer Verlag, 1988).
  25. A. Kaminskii, Laser Crystals, 2nd ed. (Springer Verlag, 1981).
  26. K. Otsuka, “Transverse effects on antiphase laser dynamics,” Jpn. J. Appl. Phys. 32, L1414–L1417 (1993). [CrossRef]
  27. J.-Y. Ko, T. Ohtomo, K. Abe, and K. Otsuka, “Nonlinear dynamics and application of laser-diode pumped microchip solid-state lasers with optical feedback,” Int. J. Mod. Phys. B 15, 3369–3395(2001). [CrossRef]
  28. E. Lacot and F. Stoeckel, “Nonlinear mode coupling in a microchip laser,” J. Opt. Soc. Am. B 13, 2034–2040 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited