OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 1864–1870

Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments

Elie Maalouf, Bruno Colicchio, and Alain Dieterlen  »View Author Affiliations

JOSA A, Vol. 28, Issue 9, pp. 1864-1870 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In three-dimensional fluorescence microscopy the point spread function (PSF) changes with depth, inducing errors in the restored images when these variations are neglected during the deconvolution of thick specimens. Some deconvolution algorithms have been developed to take the depth variations of the PSF into consideration. For these algorithms, the accuracy of the estimated structures depends on the knowledge of the PSF at various depths. We propose an alternative to measuring all required PSFs at different depths. The needed PSFs are interpolated from a limited measured PSF set using a method based on Zernike moments. The proposed method offers the possibility to obtain an accurate PSF interpolation at different depths using only a few measured ones.

© 2011 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.2000) Image processing : Digital image processing
(100.6890) Image processing : Three-dimensional image processing
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Image Processing

Original Manuscript: April 11, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 13, 2011
Published: August 23, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Elie Maalouf, Bruno Colicchio, and Alain Dieterlen, "Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments," J. Opt. Soc. Am. A 28, 1864-1870 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. G. McNally, C. Preza, J.-A. Conchello, and L. J. Thomas, “Artifacts in computational optical-sectioning microscopy,” J. Opt. Soc. Am. A 11, 1056–1067 (1994). [CrossRef]
  2. J. G. McNally, T. Karpova, J. Cooper, and J. A. Conchello, “Three-dimensional imaging by deconvolution microscopy,” Methods 19, 373–385 (1999). [CrossRef] [PubMed]
  3. P. Sarder and A. Nehorai, “Deconvolution methods for 3-D fluorescence microscopy images,” IEEE Signal Process. Mag. 23, 32–45 (2006). [CrossRef]
  4. R. Neelamani, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Process. 52, 418–433 (2004). [CrossRef]
  5. C. Vonesch and M. Unser, “A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution,” IEEE Trans. Image Process. 17, 539–549 (2008). [CrossRef] [PubMed]
  6. S. F. Gibson and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” J. Opt. Soc. Am. A 9, 154–166 (1992). [CrossRef] [PubMed]
  7. C. Preza and J.-A. Conchello, “Depth-variant maximum-likelihood restoration for three-dimensional fluorescence microscopy,” J. Opt. Soc. Am. A 21, 1593–1601 (2004). [CrossRef]
  8. J. G. Nagy and D. P. O’Leary, “Fast iterative image restoration with a spatially-varying PSF,” Proc. SPIE 3162, 388–399 (1997). [CrossRef]
  9. C. Preza and J.-A. Conchello, “Image estimation accounting for point-spread function depth-variation in three-dimensional fluorescence microscopy,” Proc. SPIE 4964, 135–142 (2003). [CrossRef]
  10. M. Arigovindan, J. Shaevitz, J. McGowan, J. W. Sedat, and D. A. Agard, “A parallel product-convolution approach for representing the depth varying point spread functions in 3D widefield microscopy based on principalcomponent analysis,” Opt. Express 18, 6461–6476 (2010). [CrossRef] [PubMed]
  11. J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. A 24, 2622–2627(2007). [CrossRef]
  12. S. F. Gibson and F. Lanni, “Diffraction by a circular aperture as a model for three-dimensional optical microscopy,” J. Opt. Soc. Am. A 6, 1357–1367 (1989). [CrossRef] [PubMed]
  13. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995). [CrossRef]
  14. A. Chomik, A. Dieterlen, C. Xu, O. Haeberle, J. J. Meyer, and S. Jacquey, “Quantification in optical sectioning microscopy: a comparison of some deconvolution algorithms in view of 3D image segmentation,” J. Opt. 28, 225–233 (1997). [CrossRef]
  15. A. Diaspro, F. Federici, and M. Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt. 41, 685–690 (2002). [CrossRef] [PubMed]
  16. O. Haeberlé, F. Bicha, C. Simler, A. Dieterlen, C. Xu, B. Colicchio, S. Jacquey, and M.-P. Gramain, “Identification of acquisition parameters from the point spread function of a fluorescence microscope,” Opt. Commun. 196, 109–117 (2001). [CrossRef]
  17. F. Aguet, D. Van de ville, and M. Unser, “An accurate PSF model with few parameters for axially shift-variant deconvolution,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2008), pp. 157–160. [CrossRef]
  18. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Computational adaptive optics for live three-dimensional biological imaging,” Proc. Natl. Acad. Sci. U.S.A. 98, 3790–3795 (2001). [CrossRef] [PubMed]
  19. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field fluorescence microscopy,” J. Microsc. 216, 32–48 (2004). [CrossRef] [PubMed]
  20. J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, “Image-adaptive deconvolution for three-dimensional deep biological imaging,” Biophys. J. 85, 3991–4001 (2003). [CrossRef] [PubMed]
  21. M. Von Tiedemann, A. Fridberger, M. Ulfendahl, I. Tomo, J. B. de Monvel, and J. B. De Monvel, “Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy,” Microsc. Res. Tech. 69, 10–20 (2006). [CrossRef] [PubMed]
  22. S. X. Liao and M. Pawlak, “Image analysis with Zernike moment descriptors,” in 1997 IEEE Canadian Conference on Electrical and Computer Engineering (IEEE, 1997), Vol. 2, pp. 700–703.
  23. C.-W. Chong, P. Raveendran, and R. Mukundan, “Translation invariants of Zernike moments,” Pattern Recogn. 36, 1765–1773(2003). [CrossRef]
  24. A. Dieterlen, A. De Meyer, P. Kessler, B. Colicchio, and J. De Mey, “On the use of Zernike polynomials in PSF processing: 4-D wide field fast microscopy images deconvolution,” presented at the International Conference Focus on Microscopy 2005, Jena, Germany (March 20–23, 2005).
  25. A. De Meyer, “Contribution à l’amélioration des outils de restauration d’image et de caractérisation de l’instrument en microscopie 3D par fluorescence,” Ph.D. dissertation (Université de Mulhouse, 2008).
  26. N. Becherer, H. Jodicke, G. Schlosser, J. Hesser, F. Zeilfelder, and R. Manner, “On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions,” Proc. SPIE 6065, 60650C-11 (2006). [CrossRef]
  27. O. Haeberlé, “Focusing of light through a stratified medium: a practical approach for computing microscope point spread functions. Part I: conventional microscopy,” Opt. Commun. 216, 55–63 (2003). [CrossRef]
  28. M. R. Teague, “Image analysis via the general theory of moments*,” J. Opt. Soc. Am. 70, 920–930 (1980). [CrossRef]
  29. M. Pawlak and S. X. Liao, “On the recovery of a function on a circular domain,” IEEE Trans. Inf. Theory 48, 2736–2753 (2002). [CrossRef]
  30. A.-R. Mohammed and J. Yang, “Practical fast computation of Zernike moments,” J. Comp. Sci. Technol. 17, 181–188 (2002). [CrossRef]
  31. J. Gu, H. Z. Shu, C. Toumoulin, and L. M. Luo, “A novel algorithm for fast computation of Zernike moments,” Pattern Recogn. 35, 2905–2911 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited