OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 1871–1879

Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration

Bart Jaeken, Linda Lundström, and Pablo Artal  »View Author Affiliations

JOSA A, Vol. 28, Issue 9, pp. 1871-1879 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The interest in the eye’s off-axis aberrations has increased strongly. On-axis the conversion of the aberration magnitude between different wavelengths is well known. We verified if this compensation is correct also for off-axis measurements by building a wavelength tunable peripheral Hartmann–Shack sensor and measuring 11 subjects out to ± 30 ° in the horizontal visual field. At the fovea, an average longitudinal chromatic aberration of 1 D between red ( 671 nm ) and blue ( 473 nm ) light was found, and it increased slightly with eccentricity (up to 1.2 D ). A similar trend was measured for astigmatism as a function of wavelength (increase 0.15 D ). Computational ray tracing in model eyes showed that the origin of the small increase of chromatic aberrations with eccentricity is the change of the oblique power of the refractive surfaces in the eye. Factors related to increase of axial length and refractive index of the eye were found to have a very small influence.

© 2011 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: June 17, 2011
Revised Manuscript: July 25, 2011
Manuscript Accepted: July 25, 2011
Published: August 25, 2011

Virtual Issues
Vol. 6, Iss. 10 Virtual Journal for Biomedical Optics

Bart Jaeken, Linda Lundström, and Pablo Artal, "Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration," J. Opt. Soc. Am. A 28, 1871-1879 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Schaeffel, A. Glasser, and H. C. Howland, “Accommodation, refractive error and eye growth in chickens,” Vision Res. 28, 639–657 (1988). [CrossRef] [PubMed]
  2. E. L. Smith, C. Kee, R. Ramamirham, Y. Qiao-Grider, and L. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Visual Sci. 46, 3965–3972 (2005). [CrossRef]
  3. S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37, 659–668 (1997). [CrossRef] [PubMed]
  4. E. L. Smith, L. Hung, and J. Huang, “Relative peripheral hyperopic defocus alters central refractive development in infant monkeys,” Vision Res. 49, 2389–2392 (2009). [CrossRef]
  5. E. L. Smith, L. Hung, J. Huang, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Effects of optical defocus on refractive development in monkeys: Evidence for local, regionally selective mechanisms,” Invest. Ophthalmol. Visual Sci. 51, 3864–3873 (2010). [CrossRef]
  6. J. Hoogerheide, F. Rempt, and W. P. H. Hoogenboom, “Acquired myopia in young pilots,” Ophthalmologica 163, 209–215(1971). [CrossRef] [PubMed]
  7. D. O. Mutti, J. R. Hayes, G. L. Mitchell, L. A. Jones, M. L. Moeschberger, S. A. Gotter, R. N. Kleinstein, R. E. Manny, J. D. Twelker, and K. Zadnik, “Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia,” Invest. Ophthalmol. Visual Sci. 48, 2510–2519(2007). [CrossRef]
  8. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447–468 (2004). [CrossRef] [PubMed]
  9. L. Lundström, A. Mira-Agudelo, and P. Artal, “Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes,” J. Vision 9, 17 (2009). [CrossRef]
  10. L. Lundström, J. Gustafsson, and P. Unsbo, “Population distribution of wavefront aberrations in the peripheral human eye,” J. Opt. Soc. Am. A 26, 2192–2198 (2009). [CrossRef]
  11. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. E. Jones, and J. M. Pope, “Shape of the retinal surface in emmetropia and myopia,” Invest. Ophthalmol. Visual Sci. 46, 1450–1458(2005). [CrossRef]
  12. D. O. Mutti, R. I. Sholtz, N. E. Friedman, and K. Zadnik, “Peripheral refraction and ocular shape in children,” Invest. Ophthalmol. Visual Sci. 41, 1022–1030 (2000).
  13. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, “Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects,” J. Opt. Soc. Am. A 19, 2363–2373(2002). [CrossRef]
  14. P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing and the absence of motion reversals in peripheral vision,” Vision Res. 35, 939–947 (1995). [CrossRef] [PubMed]
  15. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15, 12654–12661 (2007). [CrossRef] [PubMed]
  16. J. Santamaría, P. Artal, and J. Bescós, “Determination of the point spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114(1987). [CrossRef] [PubMed]
  17. A. Guirao and P. Artal, “Off-axis monchromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999). [CrossRef] [PubMed]
  18. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  19. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann–Shack aberrometry,” J. Opt. Soc. Am. A 24, 2963–2973(2007). [CrossRef]
  20. E. J. Fernández and P. Artal, “Ocular aberrations up to the infrared range: from 632.8 to 1070 nm,” Opt. Express 16, 21199–21208 (2008). [CrossRef] [PubMed]
  21. S. Manzanera, C. Canovas, P. M. Prieto, and P. Artal, “A wavelength tunable wavefront sensor for the human eye,” Opt. Express 16, 7748–7755 (2008). [CrossRef] [PubMed]
  22. W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976). [CrossRef] [PubMed]
  23. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberrations in humans,” Appl. Opt. 31-19, 3594–3600 (1992). [CrossRef]
  24. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37(2005). [CrossRef]
  25. J. Nam, J. Rubinstein, and L. N. Thibos, “Wavelength adjustment using an eye model from aberrometry data,” J. Opt. Soc. Am. A 27, 1561–1574 (2010). [CrossRef]
  26. C. E. Campbell, “Relative importance of sources of chromatic refractive error in the human eye,” J. Opt. Soc. Am. A 27, 730–738 (2010). [CrossRef]
  27. Y. Wang and L. N. Thibos, “Oblique (off-axis) astigmatism of the reduced schematic eye with elliptical refracting surface,” Optometry Vision Sci. 74, 557–562 (1997). [CrossRef]
  28. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513–522 (1998). [CrossRef] [PubMed]
  29. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999). [CrossRef]
  30. Y. U. Ogboso and H. E. Bedell, “Magnitude of lateral chromatic aberration across the retina of the human eye,” J. Opt. Soc. Am. A 4, 1666–1672 (1987). [CrossRef] [PubMed]
  31. L. Lundström and P. Unsbo, “Unwrapping Hartmann–Shack images from highly aberrated eyes using an iterative B-spline based extrapolation method,” Optometry Vision Sci. 81, 569–577 (2004). [CrossRef]
  32. American National Standards Institute, “Methods for reporting optical aberrations of eyes,” Tech. Rep. ANSI Z80.28-2004(2004).
  33. H. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695(1997). [CrossRef]
  34. D. A. Atchison, N. Pritchard, and K. L. Schmid, “Peripheral refraction along the horizontal and vertical visual fields in myopia,” Vision Res. 46, 1450–1458 (2006). [CrossRef]
  35. B. Jaeken, L. Lundström, and P. Artal, “Fast scanning peripheral wave-front sensor for the human eye,” Opt. Express 19, 7903–7913 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited