OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 1909–1919

First-order speckle statistics for arbitrary aberration strength

Natalia Yaitskova and Szymon Gladysz  »View Author Affiliations


JOSA A, Vol. 28, Issue 9, pp. 1909-1919 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001909


View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rigorous theory for the mean and standard deviation of speckle intensity for an arbitrary number of contributing phasors and an arbitrary level of phase fluctuations. This framework contains the classic models of speckle as the special cases, and it is compatible with the recently proposed models of Rician distribution of speckle intensity and of the Strehl ratio variability in adaptive optics images. We demonstrate that applicability of that or another distribution law depends not only on the level of aberrations in the pupil and the number of the phasors, but also on the observation point in the focal plane.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.6140) Coherence and statistical optics : Speckle

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: April 6, 2011
Revised Manuscript: June 27, 2011
Manuscript Accepted: July 20, 2011
Published: August 26, 2011

Citation
Natalia Yaitskova and Szymon Gladysz, "First-order speckle statistics for arbitrary aberration strength," J. Opt. Soc. Am. A 28, 1909-1919 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-9-1909


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Dainty, ed., Laser Speckle and Related Phenomana, 2nd ed. (Springer, 1984).
  2. J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).
  3. A. Boccaletti, P. Riaud, and D. Rouan, “Speckle symmetry with high-contrast coronagraphs,” Publ. Astron. Soc. Pac. 114, 132–136 (2002). [CrossRef]
  4. C. Marois, D. Lafreniere, B. Macintosh, and R. Doyon, “Confidence level and sensitivity limits in high-contrast imaging,” Astrophys. J. 673, 647–656 (2008). [CrossRef]
  5. R. Soummer, A. Ferrari, C. Aime, and L. Jolissaint, “Speckle noise and dynamic range in coronagraphic images,” Astrophys. J. 669, 642–656 (2007). [CrossRef]
  6. S. Gladysz and J. Christou, “Reference-less detection, astrometry, and photometry of faint companions with adaptive optics,” Astrophys. J. 698, 28–42 (2009). [CrossRef]
  7. S. Gladysz, N. Yaitskova, and J. Christou, “Statistics of intensity in adaptive-optics images and their usefulness for detection and photometry of exoplanets,” J. Opt. Soc. Am. A 27, A64–A75(2010). [CrossRef]
  8. J. Uozumi and T. Asakura, “The first-order statistics of partially developed non-Gaussian speckle patterns,” J. Opt. 12, 177–186(1981). [CrossRef]
  9. J. Ohtsubo and T. Asakura, “Statistical properties of laser speckle produced in the diffraction field,” Appl. Opt. 16, 1742–1753 (1977). [CrossRef] [PubMed]
  10. J. Ohtsubo and T. Asakura, “Statistical properties of the sum of partially developed speckle pattern,” Opt. Lett. 1, 98–100(1977). [CrossRef] [PubMed]
  11. J. Ohtsubo and T. Asakura, “Statistical properties of speckle patterns produced by coherent light at the image and defocus planes,” Optik 45, 65–72 (1976).
  12. J. C. Dainty, “Coherent addition of a uniform beam to a speckle pattern,” J. Opt. Soc. Am. 62, 595–596 (1972). [CrossRef]
  13. V. Canales and M. Cagigal, “Rician distribution to describe speckle statistics in adaptive optics,” Appl. Opt. 38, 766–771(1999). [CrossRef]
  14. S. Gladysz, J. Christou, and M. Redfern, “Characterization of the Lick adaptive optics point spread function,” Proc. SPIE 6272, 62720J (2006). [CrossRef]
  15. R. Soummer and A. Ferrari, “The Strehl ratio in adaptive optics images: statistics and estimation,” Astrophys. J. 663, L49–L52(2007). [CrossRef]
  16. S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, Jr., “Temporal variability and the statistics of the Strehl ratio in adaptive-optics images,” Publ. Astron. Soc. Pac. 120, 1132–1143(2008). [CrossRef]
  17. C. Aime and R. Soummer, “The usefulness and limits of coronagraphy in the presence of pinned speckles,” Astrophys. J. 612, L85–L88 (2004). [CrossRef]
  18. M. Fitzgerald and J. Graham, “Speckle statistics in adaptively corrected images,” Astrophys. J. 637, 541–547 (2006). [CrossRef]
  19. N. Yaitskova, K. Dohlen, and P. Dierickx, “Analytical study of diffraction effects in extremely large segmented telescopes,” J. Opt. Soc. Am. A 20, 1563–1575 (2003). [CrossRef]
  20. N. Yaitskova and S. Gladysz, “Telling planets from speckles created by telescope segmentation,” Proc. SPIE 7733, 773351(2010). [CrossRef]
  21. E. Aller-Carpentier, M. Kasper, P. Martinez, E. Vernet, E. Fedrigo, C. Soenke, S. Tordo, N. Hubin, C. Verinaud, S. Esposito, E. Pinna, A. Puglisi, A. Tozzi, F. Quiros, A. Basden, S. Goodsell, G. Love, and R. Myers,  “High order test bench for extreme adaptive optics system optimization,” Proc. SPIE 7015, 70153Z(2008). [CrossRef]
  22. N. Yaitskova and S. Gladysz, are preparing a manuscript to be called “How many cells in a wavefront?” (nyaitsko@eso.org).
  23. H. Yura and D. Fried, “Variance of the Strehl ratio of an adaptive optics system,” J. Opt. Soc. Am. A 15, 2107–2110 (1998). [CrossRef]
  24. T. Fusco and J.-M. Conan, “On- and off-axis statistical behavior of adaptive-optics-corrected short-exposure Strehl ratio,” J. Opt. Soc. Am. A 21, 1277–1289 (2004). [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1986).
  26. N. Yaitskova, “Influence of irregular gaps between primary mirror segments on telescope image quality,” J. Opt. Soc. Am. A 24, 2558–2567 (2007). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005) p. 446.
  28. R. Gilmozzi and J. Spyromilio, “The 42.5 m European ELT: status,” Proc. SPIE 7012, 701219 (2008). [CrossRef]
  29. E. Bloemhof, R. Dekany, M. Troy, and B. Oppenheimer, “Behavior of remnant speckles in an adaptively corrected imaging system,” Astrophys. J. Lett. 558, L71–L74 (2001). [CrossRef]
  30. M. Spiegel, Theory and Problems of Probability and Statistics (McGraw-Hill, 1992).
  31. A. Labeyrie, “Images of exo-planets obtainable from dark speckles in adaptive telescopes,” Astron. Astrophys. 298, 544–548(1995).
  32. S. Gladysz, J. C. Christou, N. M. Law, R. Dekany, M. Redfern, and C. D. Mackay, “Lucky imaging and speckle discrimination for the detection of faint companions with adaptive optics,” Proc. SPIE 7105, 70152H (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited