OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 1920–1924

Line-source scattering properties of metallic carbon nanotubes

Afshin Moradi and Heidar Khosravi  »View Author Affiliations


JOSA A, Vol. 28, Issue 9, pp. 1920-1924 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001920


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electromagnetic wave scattering from a metallic multiwalled carbon nanotube is investigated by using the boundary-value approach and modal series expansion of the scattered and transmitted fields. Electronic excitations of each wall of the system are modeled as an infinitesimally thin cylindrical layer of the free electrons, whose dynamics are described by means of the fluid theory. The system is illuminated by a cylindrical wave from a line source that is placed in a direction parallel to the nanotube axis. The problem is two-dimensional, and the solution to both types of polarization (electric and magnetic line source) is presented.

© 2011 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: June 6, 2011
Revised Manuscript: July 30, 2011
Manuscript Accepted: August 3, 2011
Published: August 29, 2011

Citation
Afshin Moradi and Heidar Khosravi, "Line-source scattering properties of metallic carbon nanotubes," J. Opt. Soc. Am. A 28, 1920-1924 (2011)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-28-9-1920


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electronic and electromagnetic properties of nanotubes,” Phys. Rev. B 57, 9485–9497(1998). [CrossRef]
  2. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, “Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation,” Phys. Rev. B 60, 17136–17149 (1999). [CrossRef]
  3. M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes,” Phys. Rev. B 76, 155407(2007). [CrossRef]
  4. L. Wei and Y. N. Wang, “Electromagnetic wave propagation in single-wall carbon nanotubes,” Phys. Lett. A 333, 303–309(2004). [CrossRef]
  5. H. Khosravi and A. Moradi, “Comment on: ‘Electromagnetic wave propagation in single-wall carbon nanotubes’,” Phys. Lett. A 364, 515–516 (2007). [CrossRef]
  6. G. W. Hanson, “Fundamental transmitting properties of carbon nanotube antennas,” IEEE Trans. Antennas Propag. 53, 3426–3435 (2005). [CrossRef]
  7. A. Moradi, “Plasma wave propagation in a pair of carbon nanotubes,” JETP Lett. 88, 795–798 (2008). [CrossRef]
  8. A. Moradi, “Guided dispersion characteristics of metallic single-walled carbon nanotubes in the presence of dielectric media,” Opt. Commun. 283, 160–163 (2010). [CrossRef]
  9. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef] [PubMed]
  10. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  11. Z. Ye, W. D. Deering, A. Krokhin, and J. A. Roberts, “Microwave absorption by an array of carbon nanotubes: a phenomenological model,” Phys. Rev. B 74, 075425 (2006). [CrossRef]
  12. Z. Peng, J. Peng, and Y. Ou, “Microwave absorbing properties of hydrogen plasma in single wall carbon nanotubes,” Phys. Lett. A 359, 56–60 (2006). [CrossRef]
  13. A. Moradi, “Microwave absorption of magnetized hydrogen plasma in carbon nanotubes,” Phys. Plasmas 16, 113501 (2009). [CrossRef]
  14. A. Moradi, “Microwave response of magnetized hydrogen plasma in carbon nanotubes: multiple reflection effects,” Appl. Opt. 49, 1728–1733 (2010). [CrossRef] [PubMed]
  15. G. Miano and F. Villone, “An integral formulation for the electrodynamics of metallic carbon nanotubes based on a fluid model,” IEEE Trans. Antennas Propag. 54, 2713–2724(2006). [CrossRef]
  16. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, “Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas,” Phys. Rev. B 73, 195416 (2006). [CrossRef]
  17. J. Hao and G. W. Hanson, “Electromagnetic scattering from finite-length metallic carbon nanotubes in the lower IR bands,” Phys. Rev. B 74, 035119 (2006). [CrossRef]
  18. S. M. Mikki and A. Kishk, “Theory of optical scattering by carbon nanotube,” Microw. Opt. Technol. Lett. 49, 2360–2364(2007). [CrossRef]
  19. S. M. Mikki and A. Kishk, “Electromagnetic scattering by multi-walled carbon nanotubes,” PIER 17, 49–67 (2009). [CrossRef]
  20. E. Malic, M. Hirtschulz, F. Milde, Y. Wu, J. Maultzsch, T. F. Heinz, A. Knorr, and S. Reich, Phys. Rev. B 77, 045432 (2008). [CrossRef]
  21. G. Nasis, I.-G. Plegas, D. S. Sofronis, and H. T. Anastassiu, “Transmission and scattering properties of carbon nanotube arrays,” in EMC Europe Workshop 2009—Materials in EMC Applications(National Technical University of Athens, 2009), pp. 13–16.
  22. A. Moradi, “Oblique incidence scattering from single-walled carbon nanotubes,” Phys. Plasmas 17, 033504 (2010). [CrossRef]
  23. H. Khosravi and A. Moradi, “Scattering cross section of metallic two-walled carbon nanotubes,” Opt. Commun. 284, 2629–2632(2011). [CrossRef]
  24. H. Khosravi and A. Moradi, “Scattering properties of metallic carbon nanotubes in the presence of dielectric media,” J. Mod. Opt. (to be published).
  25. A. Moradi, “Optical scattering by a spherical two-dimensional electron gas: application to the C60 molecule,” Optik (to be published), doi:10.1016/j.ijleo.2011.01.016. [CrossRef]
  26. S. A. Schelkunoff, “Some equivalence theorems of electromagnetic and their application to radiation problems,” Bell Syst. Tech. J. 15, 92–112 (1936).
  27. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1961).
  28. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1982).
  29. C. A. Balanis, Advanced Engineering Electromagnetics(Wiley, 1989).
  30. R. P. Parrikar, A. A. Kishk, and A. Z. Elsherbeni, “Scattering from an impedance cylinder embedded in a nonconcentric dielectric cylinder,” in Proceedings of the IEEE SoutheastCon 1990 (IEEE, 1991), Vol.  3, pp. 1002–1007. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited