OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 105–116

Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude

Vladimir Katkovnik and Jaakko Astola  »View Author Affiliations


JOSA A, Vol. 29, Issue 1, pp. 105-116 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000105


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 4 f optical setup is considered with a wave field modulation by a spatial light modulator located in the focal plane of the first lens. Phase as well as amplitude of the wave field are reconstructed from noisy multiple-intensity observations. The reconstruction is optimal due to a constrained maximum likelihood formulation of the problem. The proposed algorithm is iterative with decoupling of the inverse of the forward propagation of the wave field and the filtering of phase and amplitude. The sparse modeling of phase and amplitude enables the advanced high-accuracy filtering and sharp imaging of the complex-valued wave field. Artifacts typical for the conventional algorithms (wiggles, ringing, waves, etc.) and attributed to optical diffraction can be suppressed by the proposed algorithm.

© 2012 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Image Processing

History
Original Manuscript: April 29, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: October 14, 2011
Published: December 19, 2011

Citation
Vladimir Katkovnik and Jaakko Astola, "Phase retrieval via spatial light modulator phase modulation in 4f optical setup: numerical inverse imaging with sparse regularization for phase and amplitude," J. Opt. Soc. Am. A 29, 105-116 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-1-105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron optics: I. Test calculations, J. Phys. D 6, 2200–2216 (1973). [CrossRef]
  2. W. O. Saxton, “Correction of artefacts in linear and nonlinear high resolution electron micrographs,” J. Microsc. Spectrosc. Electron. 5, 661–670 (1980).
  3. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005). [CrossRef] [PubMed]
  4. P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605 (2006). [CrossRef] [PubMed]
  5. P. Almoro, A. M. S. Maallo, and S. Hanson, “Fast-convergent algorithm for speckle-based phase retrieval and a design for dynamic wavefront sensing,” Appl. Opt. 48, 1485–1493 (2009). [CrossRef] [PubMed]
  6. C. Kohler, F. Zhang, and W. Osten, “Characterization of a spatial light modulator and its application in phase retrieval,” Appl. Opt. 48, 4003–4008 (2009). [CrossRef] [PubMed]
  7. L. Camacho, V. Micy, Z. Zalevsky, and J. Garcha, “Quantitative phase microscopy using defocusing by means of a spatial light modulator,” Opt. Express 18, 6755–6766 (2010). [CrossRef] [PubMed]
  8. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85, 4795–4797(2004). [CrossRef]
  9. G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, “Optical wavefront measurement using phase retrieval with transverse translation diversity,” Opt. Express 17, 624–639 (2009). [CrossRef] [PubMed]
  10. J. Glückstad and D. Palima, Generalised Phase Contrast: Applications in Optics and Photonics, Springer Series in Optical Sciences (Springer, 2009), Vol.  146.
  11. C. Falldorf, M. Agour, C. V. Kopylow, and R. B. Bergmann, “Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system,” Appl. Opt. 49, 1826–1830(2010). [CrossRef] [PubMed]
  12. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  13. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef] [PubMed]
  14. G. Yang, B. Dong, B. Gu, J. Zhuang, and O. K. Ersoy, “Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison,” Appl. Opt. 33, 209–218(1994). [CrossRef] [PubMed]
  15. V. Y. Ivanov, V. P. Sivokon, and M. A. Vorontsov, “Phase retrieval from a set of intensity measurements: theory and experiment,”J. Opt. Soc. Am. A 9, 1515–1524 (1992). [CrossRef]
  16. G. Pedrini, W. Osten, and Y. Zhang, “Wave-front reconstruction from a sequence of interferograms recorded at different planes,” Opt. Lett. 30, 833–835 (2005). [CrossRef] [PubMed]
  17. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737–1746 (1993). [CrossRef] [PubMed]
  18. R. Irwan and R. G. Lane, “Phase retrieval with prior information,” J. Opt. Soc. Am. A 15, 2302–2311 (1998). [CrossRef]
  19. R. G. Lane, “Phase retrieval using conjugate gradient minimization,” J. Mod. Opt. 38, 1797–1813 (1991). [CrossRef]
  20. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509(2006). [CrossRef]
  21. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006). [CrossRef]
  22. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  23. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17, 23920–23946 (2009). [CrossRef]
  24. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049(2009). [CrossRef] [PubMed]
  25. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef] [PubMed]
  26. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010). [CrossRef] [PubMed]
  27. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010). [CrossRef]
  28. Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646 (2010). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  30. D. Han, K. Kornelson, D. Larson, and E. Weber, Frames for Undergraduates, Student Mathematical Library (American Mathematical Society, 2007).
  31. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010). [PubMed]
  32. J.-L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University, 2010). [CrossRef]
  33. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007). [CrossRef] [PubMed]
  34. V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-model image denoising,” Int. J. Comput. Vis. 86, 1–32 (2010). [CrossRef]
  35. A. Danielyan, V. Katkovnik, and K. Egiazarian, “Image deblurring by augmented Lagrangian with BM3D frame prior,” presented at the Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), Tampere, Finland, 16–18 Aug. 2010.
  36. V. Katkovnik, A. Danielyan, and K. Egiazarian, “Decoupled inverse and denoising for image deblurring: variational BM3D-frame technique,” in Proceedings of the International Conference on Image Processing (IEEE, 2011), pp. 3514–3517.
  37. V. Katkovnik and J. Astola, “High-accuracy wave field reconstruction: decoupled inverse imaging with sparse modeling of phase and amplitude,” J. Opt. Soc. Am. A 29, 44–54(2012). [CrossRef]
  38. D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).
  39. A. Migukin, V. Katkovnik, J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011). [CrossRef]
  40. V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wave field distributions,” Appl. Opt. 47, 3481–3493 (2008). [CrossRef] [PubMed]
  41. J. B. Buckheit and D. L. Donoho, “WaveLab and reproducible research,” Tech. Rep. 474 (Stanford University, 1995), http://www-stat.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf.
  42. B. Javidi, G. Zhang, and J. Li, “Encrypted optical memory using double-random phase encoding,” Appl. Opt. 36, 1054–1058(1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited