OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 117–123

Self-consistent optical constants of sputter-deposited B 4 C thin films

Juan I. Larruquert, Antonio P. Pérez-Marín, Sergio García-Cortés, Luis Rodríguez-de Marcos, José A. Aznárez, and José A. Méndez  »View Author Affiliations


JOSA A, Vol. 29, Issue 1, pp. 117-123 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000117


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical constants of ion-beam-sputtered B 4 C films have been measured by ellipsometry in the 190 950 nm range. The set of data has been extended toward both shorter and longer wavelengths with data in the literature, along with interpolations and extrapolations, in order to obtain a self-consistent set of data by means of Kramers–Krönig analysis. All data correspond to films that were deposited by sputtering on nonheated substrates, and hence they are expected to be amorphous. The B 4 C bandgap was calculated as a fitting parameter of Tauc equations for indirect transitions using the present optical constants. Good global accuracy of the data was estimated through the use of various sum rules. The consistent data set includes the visible to the extreme UV (EUV); this large spectrum of characterization will enable the design of multilayer coatings that combine a relatively high reflectance in parts of the EUV with a desired performance at a secondary range, such as the visible.

© 2012 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.6000) Materials : Semiconductor materials
(230.4170) Optical devices : Multilayers
(260.7200) Physical optics : Ultraviolet, extreme
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 4, 2011
Manuscript Accepted: October 21, 2011
Published: December 22, 2011

Citation
Juan I. Larruquert, Antonio P. Pérez-Marín, Sergio García-Cortés, Luis Rodríguez-de Marcos, José A. Aznárez, and José A. Méndez, "Self-consistent optical constants of sputter-deposited B4C thin films," J. Opt. Soc. Am. A 29, 117-123 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-1-117


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. M. Blumenstock and R. A. M. Keski-Kuha, “Ion-beam-deposited boron carbide coatings for the extreme ultraviolet,” Appl. Opt. 33, 5962–5963 (1994). [CrossRef] [PubMed]
  2. G. M. Blumenstock, R. A. M. Keski-Kuha, and M. L. Ginter, “Extreme ultraviolet optical properties of ion-beam-deposited boron carbide thin films,” Proc. SPIE 2515, 558–564 (1995). [CrossRef]
  3. J. I. Larruquert and R. A. M. Keski-Kuha, “Optical properties of hot-pressed B4C in the extreme ultraviolet,” Appl. Opt. 39, 1537–1540 (2000). [CrossRef]
  4. J. I. Larruquert and R. A. M. Keski-Kuha, “Multilayer coatings with high reflectance in the EUV spectral region from 50 to 121.6 nm,” Appl. Opt. 38, 1231–1236 (1999). [CrossRef]
  5. J. I. Larruquert and R. A. M. Keski-Kuha, “Sub-quarterwave multilayer coatings with high reflectance in the extreme ultraviolet,” Appl. Opt. 41, 5398–5404 (2002). [CrossRef] [PubMed]
  6. D. L. Windt, S. Donguy, J. F. Seely, B. Kjornrattanawanich, E. M. Gullikson, C. C. Walton, L. Golub, and E. DeLuca, “EUV multilayers for solar physics,” Proc. SPIE 5168, 1–11 (2004). [CrossRef]
  7. F. Delmotte, J. Gautier, M. F. Ravet, F. Bridou, and A. Jérome, “Optiques multicouches pour l´extrême UV,” J. Phys. IV 127, 69–75 (2005). [CrossRef]
  8. J. Gautier, F. Delmotte, M. Roulliay, F. Bridou, M.-F. Ravet, and A. Jérome, “Study of normal incidence of three-component multilayer mirrors in the range 20–40 nm,” Appl. Opt. 44, 384–390 (2005). [CrossRef] [PubMed]
  9. Z. Wang, S. Zhang, W. Wu, J. Zhu, H. Wang, C. Li, Y. Xu, F. Wang, Z. Zhang, L. Chen, H. Zhou, and T. Huo, “B4C/Mo/Si high reflectivity multilayer mirror at 30.4 nm,” Chin. Opt. Lett. 4, 611–613(2006).
  10. S. Bajt, J. B. Alameda, T. W. Barbee, Jr., J. A. Folta, B. Kaufmann, and E. A. Spiller, “Improved reflectance and stability of Mo/Si multilayers,” Opt. Eng. 41, 1797–1804 (2002). [CrossRef]
  11. S. Braun, H. Mai, M. Moss, and R. Scholz, “Microstructure of Mo/Si multilayers with barrier layers,” Proc. SPIE 4782, 185–195(2002). [CrossRef]
  12. T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, and E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003). [CrossRef]
  13. Yu. Platonov, J. Rodriguez, M. Kriese, E. Gullikson, T. Harada, T. Watanabe, and H. Kinoshita, “Multilayers for next generation EUVL at 6.X nm,” Proc. SPIE 8076, 80760N (2011). [CrossRef]
  14. R. Soufli, S. L. Baker, J. C. Robinson, T. J. McCarville, M. J. Pivovaroff, S. P. Hau-Riege, and R. Bionta, “Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors,” Proc. SPIE 7361, 73610U (2009). [CrossRef]
  15. C. Tarrio, R. N. Watts, T. B. Lucatorto, J. M. Slaughter, and C. M. Falco, “Optical constants of in situ-deposited films of important extreme-ultraviolet multilayer mirror materials,” Appl. Opt. 37, 4100–4104 (1998). [CrossRef]
  16. F. Frassetto, D. Garoli, G. Monaco, P. Nicolosi, M. Pascolini, M. G. Pelizzo, V. Mattarello, A. Patelli, V. Rigato, A. Giglia, S. Nannarone, E. Antonucci, S. Fineschi, and M. Romoli, “Space applications of Si/B4C multilayer coatings at extreme ultra-violet region; comparison with standard Mo/Si coatings,” Proc. SPIE 5901, 59010L (2005). [CrossRef]
  17. G. Monaco, D. Garoli, R. Frison, V. Mattarello, P. Nicolosi, M. G. Pelizzo, V. Rigato, L. Armelao, A. Giglia, and S. Nannarone, “Optical constants in the EUV Soft x-ray (5–152 nm) spectral range of B4C thin films deposited by different deposition techniques,” Proc. SPIE 6317, 631712 (2006). [CrossRef]
  18. R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Appl. Opt. 47, 4633–4639 (2008). [CrossRef] [PubMed]
  19. M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft x-ray resonant reflectivity,” J. Appl. Phys. 107, 023529 (2010). [CrossRef]
  20. D. Ksenzov, T. Panzner, C. Schlemper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru=B4Cmultilayer,” Appl. Opt. 48, 6684–6691 (2009). [CrossRef] [PubMed]
  21. G. A. Samara, H. L. Tardy, E. L. Venturini, T. L. Aselage, and D. Emin, “ac hopping conductivities, dielectric constants, and reflectivities of boron carbides,” Phys. Rev. B 48, 1468–1477(1993). [CrossRef]
  22. C. Ronning, D. Schwen, S. Eyhusen, U. Vetter, and H. Hofsäss, “Ion beam synthesis of boron carbide thin films,” Surf. Coat. Technol. 158–159, 382–387 (2002). [CrossRef]
  23. A. A. Ahmad, N. J. Ianno, P. G. Snyder, D. Welipitiya, D. Byun, and P. A. Dowben, “Optical properties of boron carbide (B5C) thin films fabricated by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 79, 8643–8647(1996). [CrossRef]
  24. G. Monaco, D. Garoli, M. Natali, F. Romanato, and P. Nicolosi, “Spectroscopic study of beta-SiC prepared via PLD at 1064 nm,” Cryst. Res. Technol. 46, 784–788 (2011). [CrossRef]
  25. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, “Boron carbide: structure, properties, and stability under stress,” J. Am. Ceram. Soc. 94, 3605–3628, doi: 10.1111/j.1551-2916.2011.04865.x (2011). . [CrossRef]
  26. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films (Oxford University, 1948).
  27. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photoabsorption, scattering, and reflection, E=100–2000 eV, Z=1−94,” At. Data Nucl. Data Tables 27, 1–144(1982). [CrossRef]
  28. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1−92,” At. Data Nucl. Data Tables 54, 181–342 (1993). [CrossRef]
  29. http://henke.lbl.gov/optical_constants/.
  30. G. E. Jellison, Jr. and F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996). [CrossRef]
  31. M. Fernández-Perea, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, M. Vidal-Dasilva, E. M. Gullikson, A. Aquila, R. Soufli, and J. L. G. Fierro, “Optical constants of electron-beam evaporated boron films in the 6.8–900 eV photon energy range,” J. Opt. Soc. Am. A 24, 3800–3807 (2007). [CrossRef]
  32. N. Morita, “Optical constants of boron in visible and near infrared,” J. Sci. Res. Inst. 48, 8–12 (1954).
  33. E. A. Fagen, “Optical and electrical properties of amorphous silicon carbide films,” in Amorphous and Liquid Semiconductors: Proceedings, Vol. 1, J.Stuke and W.Brenig, eds., (Taylor & Francis, 1974), pp. 601–607. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  34. The data are available on request at the following e-mail address: larruquert@io.cfmac.csic.es.
  35. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966). [CrossRef]
  36. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3, 37–46 (1968). [CrossRef]
  37. M. L. Theye, “Optical properties of a-Ge, a-Si and a-III-V compounds,” in Amorphous and Liquid Semiconductors:Proceedings, Vol. 1, J.Stuke and W.Brenig, eds. (Taylor & Francis, 1974), pp. 479–498. It contains part of the proceedings of the International Conference on Amorphous and Liquid Semiconductors held at Garmisch-Partenkirchen, Germany, in 1973.
  38. O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction, (Springer-Verlag, 2005) p. 214.
  39. A. A. Ahmad, N. J. Ianno, S.-D. Hwang, and P. A. Dowben, “Sputter deposition of high resistivity boron carbide,” Thin Solid Films 335, 174–177 (1998). [CrossRef]
  40. J. Melsheimer and D. Ziegler, “Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide,” Thin Solid Films 129, 35–47(1985). [CrossRef]
  41. S. Lee, J. Mazurowski, G. Ramseyer, and P. A. Dowben, “Characterization of boron carbide thin films fabricated by plasma enhanced chemical vapor deposition from boranes,” J. Appl. Phys. 72, 4925–4933 (1992). [CrossRef]
  42. H. Werheit, H. Binnenbruck, and A. Hausen, “Optical properties of boron carbide and comparison with β-rhombohedral boron,” Phys. Status Solidi B 47, 153–158 (1971). [CrossRef]
  43. D. R. Armstrong, J. Bolland, P. G. Perkins, G. Will, and A. Kirfel, “The nature of the chemical bonding in boron carbide. IV. electronic band structure of boron carbide, B13C2, and three models of the structure B12C3,” Acta Crystallogr. B B39, 324–329 (1983). [CrossRef]
  44. D. M. Bylander, L. Kleinman, and S. Lee, “Self-consistent calculations of the energy bands and bonding properties of B12C3,” Phys. Rev. B 42, 1394–1403 (1990). [CrossRef]
  45. E. Shiles, T. Sasaki, M. Inokuti, and D. Y. Smith, “Self-consistency and sum-rule tests in the Kramers-Kronig analysis of optical data: applications to aluminium,” Phys. Rev. B 22, 1612–1628 (1980). [CrossRef]
  46. Downloaded from the following website of Physical Reference Data, Physics Laboratory at NIST: http://physics.nist.gov/PhysRefData/FFast/html/form.html.
  47. M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, “Superconvergence and sum rules for the optical constants,” Phys. Rev. B 6, 4502–4509 (1972). [CrossRef]
  48. M. Altarelli and D. Y. Smith, “Superconvergence and sum rules for the optical constants: physical meaning, comparison with experiment, and generalization,” Phys. Rev. B 9, 1290–1298 (1974). [CrossRef]
  49. J. I. Larruquert, A. P. Pérez-Marín, S. García-Cortés, L. Rodríguez-de Marcos, J. A. Aznárez, and J. A. Méndez, “Self-consistent optical constants of SiC thin films,” J. Opt. Soc. Am. A 28, 2340–2345 (2011). [CrossRef]
  50. M. Fernández-Perea, M. Vidal-Dasilva, J. I. Larruquert, J. A. Aznárez, J. A. Méndez, E. Gullikson, A. Aquila, and R. Soufli, “Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range,” J. Appl. Phys. 105, 113505 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited