OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 124–129

Approaches to achieve broadband optical transformation devices with transmuted singularity

Yungui Ma, Fei Sun, Yuan Zhang, Yi Jin, and Chongkim Ong  »View Author Affiliations


JOSA A, Vol. 29, Issue 1, pp. 124-129 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000124


View Full Text Article

Enhanced HTML    Acrobat PDF (945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many optical instruments with dielectric singularities cannot be manufactured directly. Their singularities can be transmuted through optical transformation, and equivalent physical media can be built to perform the same optical behaviors. The transformed physical media are usually anisotropic and inhomogeneous and, therefore, difficult to fabricate. In this work, several mathematical approaches are proposed to produce a transformed lens with all the elements of the material tensors to be no less than unity. This increases the ease of implementation, as natural materials may be used, which substantially widens the bandwidth of the transformed devices. Although we focus on an omnidirectional retroreflection lens as an example, the approaches developed here are universal and applicable to a wide class of devices with dielectric singularities.

© 2012 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(220.3630) Optical design and fabrication : Lenses
(350.6980) Other areas of optics : Transforms
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 9, 2011
Revised Manuscript: October 30, 2011
Manuscript Accepted: October 31, 2011
Published: December 23, 2011

Citation
Yungui Ma, Fei Sun, Yuan Zhang, Yi Jin, and Chongkim Ong, "Approaches to achieve broadband optical transformation devices with transmuted singularity," J. Opt. Soc. Am. A 29, 124-129 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-1-124


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  3. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  4. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, “Illusion optics: the optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  6. U. Leonhardt and T. G. Philbin, “General relativity in electric engineering,” New J. Phys. 8, 247 (2006). [CrossRef]
  7. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008). [CrossRef]
  8. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009). [CrossRef]
  9. T. Tyc and U. Leonhardt, “Superantenna made of transformation media,” New J. Phys. 10, 115026 (2008). [CrossRef]
  10. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef]
  11. Y. G. Ma, N. Wang, and C. K. Ong, “Application of inverse, strict conformal transformation to design waveguide devices,” J. Opt. Soc. Am. A 27, 968–972 (2010). [CrossRef]
  12. P. A. Huidobro, M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, “Transformation optics for plasmonics,” Nano Lett. 10, 1985–1990 (2010). [CrossRef]
  13. J. E. Eaton, “An extension of the Luneburg-type lenses,” Rept. No. 4110, Naval Research Lab, 1953.
  14. Y. G. Ma, C. K. Ong, T. Tyc, and U. Leonhardt, “An omnidirectional retroreflector based on the transmutation of dielectric singularities,” Nat. Mater. 8, 639–642 (2009). [CrossRef]
  15. D. A. Roberts, N. Kundtz, and D. R. Smith, “Optical lens compression via transformation optics,” Opt. Express 17, 16535–16542 (2009). [CrossRef]
  16. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9, 129–132 (2010). [CrossRef]
  17. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1, 124 (2010). [CrossRef]
  18. H. Y. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  19. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980(2006). [CrossRef]
  20. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef]
  21. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef]
  22. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  23. L. Gabrielli, J. Cardenas, C. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photon. 3, 461–463 (2009). [CrossRef]
  24. T. Tyc and U. Loenhardt, “Transmutation of singularities in optical instruments,” New J. Phys. 10, 115038 (2008). [CrossRef]
  25. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  26. C. W. Qiu, A. Novitsky, and L. Gao, “Inverse design mechanism of cylindrical cloaks without the knowledge of required coordinate transformation,” J. Opt. Soc. Am. A 27, 1079–1082 (2010). [CrossRef]
  27. R. K. Luneburg, Mathematical Theory of Optics (University of California, 1964).
  28. S. Xu, X. X. Cheng, S. Xi, H. O. Moser, and H. S. Chen, “Low scattering broadband cylindrical invisibility cloak in free-space,” arXiv:1108.1204 .
  29. Z. Z. Yu, Y. J. Feng, X. F. Xu, J. M. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D: Appl. Phys. 44, 185102 (2011). [CrossRef]
  30. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat. Commun. 1, 21 (2010). [CrossRef]
  31. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited