OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 130–138

Spatiotemporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation

Giacomo Cocci, Davide Barbieri, and Alessandro Sarti  »View Author Affiliations

JOSA A, Vol. 29, Issue 1, pp. 130-138 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (578 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In recent literature, particularly interesting stimulus velocity-selective behaviors were found in the response properties of neurons belonging to the primary visual cortex (V1). In this work, 93 simple and complex cell receptive fields were obtained from the recordings of different experiments made on cats (DeAngelis, Blanche, Touryan) with reverse correlation and the spike-triggered covariance methods and then fitted with a three-dimensional Gabor model, so that cells are seen as minimizers of the Heisenberg uncertainty principle over both space and time. Analysis of the model parameters’ cortical distribution suggests that V1 is spatiotemporally organized to maximize the resolution on the stimulus velocity measure.

© 2012 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4150) Vision, color, and visual optics : Motion detection
(330.6180) Vision, color, and visual optics : Spectral discrimination

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 21, 2011
Revised Manuscript: October 25, 2011
Manuscript Accepted: October 25, 2011
Published: December 23, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Giacomo Cocci, Davide Barbieri, and Alessandro Sarti, "Spatiotemporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation," J. Opt. Soc. Am. A 29, 130-138 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat,” J. Physiol. 28, 229–289 (1965).
  2. D. H. Hubel and T. N. Wiesel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophyisol. 29, 1115–1156 (1966).
  3. D. H. Hubel, Eye, Brain, and Vision (Scientific American Library, 1988).
  4. J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,” J. Opt. Soc. Am. 2, 1160–1169 (1985). [CrossRef]
  5. J. P. Jones and L. A. Palmer, “The two-dimensional spatial structure of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1187–1211 (1987).
  6. J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex,” J. Neurophysiol. 58, 1233–1258 (1987).
  7. B. G. Cleland, M. W. Dubin, and W. R. Levick, “Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus,” J. Physiol. 217, 473–496 (1971).
  8. G. C. DeAngelis, I. Ohzawa, and R. D. Freeman, “Receptive-field dynamics in the central visual pathways,” Trends Neurosci. 18, 451–458 (1995). [CrossRef]
  9. R. C. Reid, R. E. Soodak, and R. M. Shapley, “Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex,” J. Neurophysiol. 66, 505–529 (1991).
  10. D. Gabor, “Theory of communication,” J. IEE 93, 429–459 (1946). [CrossRef]
  11. R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965). [CrossRef]
  12. Visiome Network website, http://visiome.neuroinf.jp .
  13. G. C. De Angelis, I. Ohzawa, and R. D. Freeman, “Spatiotemporal organization of simple-cell receptive fields in the cats striate cortex. I. General characteristics and postnatal development,” J. Neurophysiol. 69, 1091–1117 (1993).
  14. I. Ohzawa, G. C. DeAngelis, and R. D. Freeman, “Encoding of binocular disparity by simple cells in the cat’s visual cortex,” J. Neurophysiol. 75, 1779–1805 (1996).
  15. CRCNS data sharing website, http://crcns.org .
  16. F. E. Theunissen, S. V. David, N. C. Singh, A. Hsu, W. E. Vinje, and J. L. Gallant, “Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli,” Network 12, 289–316 (2001).
  17. T. J. Blanche, M. A. Spacek, J. F. Hetke, and N. V. Swindale, “Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording,” J. Neurophysiol. 93, 2987–3000 (2005). [CrossRef]
  18. J. Touryan, B. Lau, and Y. Dan, “Isolation of relevant visual features from random stimuli for cortical complex cells,” J. Neurosci. 22, 10811–10818 (2002).
  19. S. Marcelja, “Mathematical description of the responses of simple cortical cells,” J. Opt. Soc. Am. 70, 1297–1300 (1980). [CrossRef]
  20. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion,” J. Opt. Soc. Am. A 2, 284–299 (1985). [CrossRef]
  21. N. Petkov and E. Subramanian, “Motion detection, noise reduction, texture suppression and contour enhancement by spatiotemporal Gabor filters with surround inhibition,” Biolog. Cybern. 97, 423–439 (2007). [CrossRef]
  22. A. B. Watson and A. J. Ahumada, “Model of human visual-motion sensing,” J. Opt. Soc. Am. A 2, 322–342 (1985). [CrossRef]
  23. G. C. DeAngelis, G. M. Ghose, I. Ohzawa, and R. D. Freeman, “Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons,” J. Neurosci. 19, 4046–4064 (1999).
  24. A. B. Watson and A. J. Ahumada, “A look at motion in the frequency domain,” in Motion: Representation and Perception, J. K. Tsotsos, ed. (ACM, 1983), pp. 1–10.
  25. C. Fermuller, H. Ji, and A. Kitaoka, “Illusory motion due to causal time filtering,” Vis. Res. 50, 315–329 (2010). [CrossRef]
  26. D. L. Ringach, M. J. Hawken, and R. Shapley, “Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences,” J. Vision 2 (2), 1 (2002). [CrossRef]
  27. S. K. Sasaki and I. Ohzawa, “Internal spatial organization of receptive fields of complex cells in the early visual cortex,” J. Neurophysiol. 98, 1194–1212 (2007). [CrossRef]
  28. F. Mechler and D. L. Ringach, “On the classification of simple and complex cells,” Vis. Res. 42, 1017–1033 (2002). [CrossRef]
  29. J. H. R. Maunsell and J. R. Gibson, “Visual response latencies in striate cortex of the macaque monkey,” J. Neurophysiol. 68, 1332–1344 (1992).
  30. Z. Tan and H. Yao, “The spatiotemporal frequency tuning of LGN receptive field facilitates neural discrimination of natural stimuli,” J. Neurosci. 29, 11409–11416 (2009). [CrossRef]
  31. C. Weng, C. Yeh, C. R. Stoelzel, and J. M. Alonso, “Receptive field size and response latency are correlated within the cat visual thalamus,” J. Neurophysiol. 93, 3537–3547 (2005). [CrossRef]
  32. N. J. Priebe, C. R. Casanello, and S. G. Lisberger, “The neural representation of speed in macaque area MT/V5,” J. Neurosci. 23, 5650–5661 (2003).
  33. A. B. Watson, A. J. Ahumada, and J. E. Farrell, “Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays,” J. Opt. Soc. Am. A 3, 300–307(1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited