OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 44–54

High-accuracy wave field reconstruction: decoupled inverse imaging with sparse modeling of phase and amplitude

Vladimir Katkovnik and Jaakko Astola  »View Author Affiliations

JOSA A, Vol. 29, Issue 1, pp. 44-54 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We apply a nonlocal adaptive spectral transform for sparse modeling of phase and amplitude of a coherent wave field. The reconstruction of this wave field from complex-valued Gaussian noisy observations is considered. The problem is formulated as a multiobjective constrained optimization. The developed iterative algorithm decouples the inversion of the forward propagation operator and the filtering of phase and amplitude of the wave field. It is demonstrated by simulations that the performance of the algorithm, both visually and numerically, is the current state of the art.

© 2012 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(090.1995) Holography : Digital holography

ToC Category:
Image Processing

Original Manuscript: March 16, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: September 15, 2011
Published: December 6, 2011

Vladimir Katkovnik and Jaakko Astola, "High-accuracy wave field reconstruction: decoupled inverse imaging with sparse modeling of phase and amplitude," J. Opt. Soc. Am. A 29, 44-54 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  2. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).
  3. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010). [PubMed]
  4. J. L. Starck, F. Murtagh, and J. Fadili, Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Cambridge University, 2010). [CrossRef]
  5. A. Danielyan, V. Katkovnik, and K. Egiazarian, “Image deblurring by augmented Lagrangian with BM3D frame prior,” presented at the Workshop on Information Theoretic Methods in Science and Engineering (WITMSE), Tampere, Finland (16–18 August 2010) .
  6. V. Katkovnik, A. Danielyan, and K. Egiazarian, “Decoupled inverse and denoising for image deblurring: variational BM3D-frame technique,” in Proceedings of IEEE International Conference on Image Processing (ICIP, 2011).
  7. A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and variational image deblurring,” IEEE Trans. Image Process. (to be published). [PubMed]
  8. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-domain collaborative filtering,” IEEE Trans. Image Process. 16, 2080–2095 (2007). [CrossRef] [PubMed]
  9. V. Katkovnik, A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-model image denoising,” Int. J. Comput. Vis. 86, 1–32 (2010). [CrossRef]
  10. P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. Image Process. 19, 895–911 (2010). [CrossRef]
  11. V. Katkovnik and J. Astola, “Beyond the diffraction limits: inverse numerical imaging based on transform-domain sparse modeling for phase and amplitude,” presented at the 10th Euro-American Workshop on Information Optics (WIO-2011) Benicàssim, Spain (19–24 June 2011).
  12. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006). [CrossRef] [PubMed]
  13. V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wave field propagation modeling as an inverse problem: toward perfect reconstruction of wave field distributions,” Appl. Opt. 48, 3407–3423 (2009). [CrossRef] [PubMed]
  14. V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions,” Appl. Opt. 47, 3481–3493 (2008). [CrossRef] [PubMed]
  15. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP,, 1998). [CrossRef]
  16. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006). [CrossRef]
  17. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: universal encoding strategies,” IEEE Trans. Inf. Theory 52, 5406–5425 (2006). [CrossRef]
  18. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006). [CrossRef]
  19. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse sub-wavelength images,” Opt. Express 17, 23920–23946 (2009). [CrossRef]
  20. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009). [CrossRef] [PubMed]
  21. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef] [PubMed]
  22. K. Choi, R. Horisaki, J. Hahn, S. Lim, D. L. Marks, T. J. Schulz, and D. J. Brady, “Compressive holography of diffuse objects,” Appl. Opt. 49, H1–H10 (2010). [CrossRef] [PubMed]
  23. Y. Rivenson, A. Stern, and B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010). [CrossRef]
  24. Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A 27, 1638–1646(2010). [CrossRef]
  25. D. Han, K. Kornelson, D. Larson, and E. Weber, Frames for Undergraduates (Student Mathematical Library, 2007).
  26. D. P. Bertsekas, Nonlinear Programming, 2nd ed. (Athena Scientific, 1999).
  27. M. J. Osborne, An Introduction to Game Theory (Oxford University, 2003).
  28. F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Ann. Oper. Res. , 5, 173–210 (2010). [CrossRef]
  29. J. B. Buckheit and D. L. Donoho, “WaveLab and reproducible research,” Tech. Rep. 474 (Stanford University, 1995), http://www-stat.stanford.edu/~wavelab/Wavelab_850/wavelab.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited