OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 85–88

Effect of spatial coherence on scattering from optically inhomogeneous media

Sergey Sukhov, David Haefner, Janghwan Bae, Deqiang Ma, Douglas R. Carter, and Aristide Dogariu  »View Author Affiliations


JOSA A, Vol. 29, Issue 1, pp. 85-88 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000085


View Full Text Article

Enhanced HTML    Acrobat PDF (281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The properties of light scattered from material systems depend on the characteristics of input optical fields. We study numerically the effect of the state of spatial coherence on the properties of scattered fields. Using a customized coupled dipole technique, we demonstrate that this influence manifests in changes of the statistics of intensities scattered at different angles.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(030.1640) Coherence and statistical optics : Coherence
(030.6600) Coherence and statistical optics : Statistical optics
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: July 14, 2011
Manuscript Accepted: August 17, 2011
Published: December 7, 2011

Citation
Sergey Sukhov, David Haefner, Janghwan Bae, Deqiang Ma, Douglas R. Carter, and Aristide Dogariu, "Effect of spatial coherence on scattering from optically inhomogeneous media," J. Opt. Soc. Am. A 29, 85-88 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-1-85


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. J. Hyvärinen, J. Turunen, and P. Vahimaa, “Elementary-field modeling of surface-plasmon excitation with partially coherent light,” Appl. Phys. B 101, 273–282 (2010). [CrossRef]
  2. D. G. Voelz, K. A. Bush, and P. S. Idell, “Illumination coherence effects in laser-speckle imaging: modeling and experimental demonstration,” Appl. Opt. 36, 1781–1788 (1997). [CrossRef] [PubMed]
  3. R. Schmehl, B. M. Nebeker, and E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026–3036 (1997). [CrossRef]
  4. V. Karasek, K. Dholakia, and P. Zemanek, “Analysis of optical binding in one dimension,” Appl. Phys. B 84, 149–156(2006). [CrossRef]
  5. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008). [CrossRef]
  6. P. C. Chaumet, K. Belkebir, and A. Rahmani, “Coupled-dipole method in time domain,” Opt. Express 16, 20157–20165(2008). [CrossRef] [PubMed]
  7. S. Sukhov, D. Haefner, and A. Dogariu, “Coupled dipole method for modeling optical properties of large-scale random media,” Phys. Rev. E 77, 066709 (2008). [CrossRef]
  8. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007). [CrossRef]
  9. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  10. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499(1994). [CrossRef]
  11. J. W. Goodman, Statistical Optics (Wiley, 2000).
  12. Second-order field correlations are sufficient to describe phenomena such as radiation of light, propagation, diffraction, and interference. However, in general, higher-order correlations involving multiple products and powers of field variables are necessary to describe all the statistical properties of random electromagnetic fields.
  13. X. Xiao and D. Voelz, “Wave optics simulation approach for partial spatially coherent beams,” Opt. Express 14, 6986–6992(2006). [CrossRef] [PubMed]
  14. G. Gbur, “Simulating fields of arbitrary spatial and temporal coherence,” Opt. Express 14, 7567–7578 (2006). [CrossRef] [PubMed]
  15. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley-Interscience, 2001). [CrossRef]
  16. S. Sukhov, D. Haefner, and A. Dogariu, “Stochastic reconstruction of anisotropic polarizabilities,” J. Opt. Soc. Am. A 27, 827–831 (2010). [CrossRef]
  17. D. Haefner, S. Sukhov, and A. Dogariu, “Scale-dependent anisotropic polarizability in mesoscopic structures,” Phys. Rev. E 81, 016609 (2010). [CrossRef]
  18. R. Barakat, “Direct derivation of intensity and phase statistics of speckle produced by a weak scatterer from the random sinusoid model,” J. Opt. Soc. Am. 71, 86–90 (1981). [CrossRef]
  19. D. Cabaret, S. Rossano, and C. Brouder, “Mie scattering of a partially coherent beam,” Opt. Commun. 150, 239–250 (1998). [CrossRef]
  20. J.-J. Greffet, M. De La Cruz-Gutierrez, P. V. Ignatovich, and A. Radunsky, “Influence of spatial coherence on scattering by a particle,” J. Opt. Soc. Am. A 20, 2315–2320 (2003). [CrossRef]
  21. A. Apostol and A. Dogariu, “Non-Gaussian statistics of optical near fields,” Phys. Rev. E 72, 0256602R (2005). [CrossRef]
  22. A. Apostol, A. Dogariu, and D. Carter, “Effective surface of optical coatings,” presented at the TAPPI Conference, Turku, Finland, 8–10 February 2006.
  23. A. Apostol, D. Haefner, and A. Dogariu, “Near-field characterization of effective optical interfaces,” Phys. Rev. E 74, 066603(2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited