OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2080–2091

Zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography

Sunder Ram Krishnan, Chandra Sekhar Seelamantula, Arno Bouwens, Marcel Leutenegger, and Theo Lasser  »View Author Affiliations


JOSA A, Vol. 29, Issue 10, pp. 2080-2091 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002080


View Full Text Article

Enhanced HTML    Acrobat PDF (1604 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.

© 2012 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.4790) Fourier optics and signal processing : Spectrum analysis
(110.4500) Imaging systems : Optical coherence tomography
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Imaging Systems

History
Original Manuscript: April 11, 2012
Manuscript Accepted: July 9, 2012
Published: September 11, 2012

Citation
Sunder Ram Krishnan, Chandra Sekhar Seelamantula, Arno Bouwens, Marcel Leutenegger, and Theo Lasser, "Zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography," J. Opt. Soc. Am. A 29, 2080-2091 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-10-2080


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical-coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004). [CrossRef]
  2. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412–419 (2004). [CrossRef]
  3. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Investig. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005). [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  5. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  6. G. Hausler and M. W. Lindner, “Coherence radar and spectral radar—new tools for dermatological analysis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  7. M. S. Muller, P. J. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3336–3338 (2007). [CrossRef]
  8. M. J. Hammer-Wilson, V. Nguyen, W.-G. Jung, Y. Ahn, Z. Chen, and P. Wilder-Smith, “Detection of vesicant-induced upper airway mucosa damage in the hamster cheek pouch model using optical coherence tomography,” J. Biomed. Opt. 15, 016017 (2010). [CrossRef]
  9. S. Lee, M. Young, E. Lebed, P. J. Mackenzie, M. F. Beg, and M. V. Sarunic, “Morphometry of the myopic optic nerve head using FDOCT,” Proc. SPIE 7889, 788932 (2011). [CrossRef]
  10. C. S. Seelamantula, M. L. Villiger, R. A. Leitgeb, and M. Unser, “Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography,” J. Opt. Soc. Am. A 25, 1762–1771 (2008). [CrossRef]
  11. S. Chandra Sekhar, R. A. Leitgeb, A. H. Bachmann, and M. Unser, “Logarithmic transformation technique for exact signal recovery in frequency-domain optical-coherence tomography,” Proc. SPIE 6627, 662714 (2007). [CrossRef]
  12. S. Chandra Sekhar, R. Michaely, R. A. Leitgeb, and M. Unser, “Theoretical analysis of complex-conjugate-ambiguity suppression in frequency-domain optical-coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2008), pp. 396–399.
  13. R. A. Leitgeb, R. Michaely, A. H. Bachmann, M. L. Villiger, C. Blatter, and T. Lasser, “Phase manipulation without phase shifter for complex FDOCT signal reconstruction and resonant Doppler imaging,” Proc. SPIE 6847, 60 (2008).
  14. S. C. Sekhar, R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, T. Blu, and M. Unser, “Non-iterative exact signal recovery in frequency domain optical coherence tomography,” in Proceedings of the IEEE International Symposium on Biomedical Imaging (IEEE, 2007), pp. 808–811.
  15. C. S. Seelamantula and M. Unser, “Performance analysis of the cepstral technique for frequency-domain optical-coherence tomography,” in Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (IEEE, 2008), pp. 557–560.
  16. C. S. Seelamantula and M. Unser, “Performance analysis of reconstruction techniques for frequency-domain optical-coherence tomography,” IEEE Trans. Signal Process. 58, 1947–1951 (2010). [CrossRef]
  17. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519–2535 (2005). [CrossRef]
  18. T. V. Sreenivas and R. J. Niederjohn, “Zero-crossing based spectral analysis,” IEEE Trans. Signal Process. 40, 282–293 (1992). [CrossRef]
  19. Y.-P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine-modulated filterbanks,” IEEE Signal Process. Lett. 5, 132–134 (1998). [CrossRef]
  20. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, “Filter design techniques,” in Discrete-Time Signal Processing, 2nd ed.(Pearson Prentice Hall, 2009), pp. 491–504.
  21. D. W. Meinke, J. M. Cherry, C. Dean, S. D. Rounsley, and M. Koornneef, “Arabidopsis thaliana: a model plant for genome analysis,” Science 282, 662–682 (1998). [CrossRef]
  22. S. M. Kay and R. Sudhaker, “A zero crossing-based spectrum analyzer,” IEEE Trans. Acoust. Speech Signal Process. 34, 96–104 (1986). [CrossRef]
  23. J. Jasapara and S. Wielandy, “Characterization of coated optical fibers by Fourier-domain optical coherence tomography,” Opt. Lett. 30, 1018–1020 (2005). [CrossRef]
  24. J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherence tomography—a new platform for measurement of standard and microstructured fibre dimensions,” IEE Proc. Optoelectron, 153, 229–234 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited