OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2092–2103

Multicolor cavity metrology

Kiwamu Izumi, Koji Arai, Bryan Barr, Joseph Betzwieser, Aidan Brooks, Katrin Dahl, Suresh Doravari, Jennifer C. Driggers, W. Zach Korth, Haixing Miao, Jameson Rollins, Stephen Vass, David Yeaton-Massey, and Rana X. Adhikari  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2092-2103 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1504 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Long-baseline laser interferometers used for gravitational-wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprising the interferometer must be brought into resonance with the laser field. A set of multi-input, multi-output servos then lock these cavities into place via feedback control. This procedure, known as lock acquisition, has proven to be a vexing problem and has reduced greatly the reliability and duty factor of the past generation of laser interferometers. In this article, we describe a technique for bringing the interferometer from an uncontrolled state into resonance by using harmonically related external fields to provide a deterministic hierarchical control. This technique reduces the effect of the external seismic disturbances by 4 orders of magnitude and promises to greatly enhance the stability and reliability of the current generation of gravitational-wave detectors. The possibility for using multicolor techniques to overcome current quantum and thermal noise limits is also discussed.

© 2012 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.1270) Other areas of optics : Astronomy and astrophysics
(140.3515) Lasers and laser optics : Lasers, frequency doubled
(310.6805) Thin films : Theory and design

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 9, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 17, 2012
Published: September 12, 2012

Virtual Issues
September 18, 2012 Spotlight on Optics

Kiwamu Izumi, Koji Arai, Bryan Barr, Joseph Betzwieser, Aidan Brooks, Katrin Dahl, Suresh Doravari, Jennifer C. Driggers, W. Zach Korth, Haixing Miao, Jameson Rollins, Stephen Vass, David Yeaton-Massey, and Rana X. Adhikari, "Multicolor cavity metrology," J. Opt. Soc. Am. A 29, 2092-2103 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992). [CrossRef]
  2. The LIGO Scientific Collaboration, “LIGO: the laser interferometer gravitational-wave observatory,” Rep. Prog. Phys. 72, 076901 (2009). [CrossRef]
  3. The Virgo Collaboration, “Status of the Virgo project,” Class. Quantum Grav. 28, 114002 (2011). [CrossRef]
  4. The LIGO Scientific Collaboration, “The status of GEO 600,” Class. Quantum Grav. 25, 114043 (2008). [CrossRef]
  5. The LCGT Collaboration, “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010). [CrossRef]
  6. The LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010). [CrossRef]
  7. K. A. Strain and B. N. Shapiro, “Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors,” Rev. Sci. Instrum. 83, 044501 (2012). [CrossRef]
  8. J. Camp, L. Sievers, R. Bork, and J. Heefner, “Guided lock acquisition in a suspended Fabry–Perot cavity,” Opt. Lett. 20, 2463–2465 (1995). [CrossRef]
  9. M. Evans, N. Mavalvala, P. Fritschel, R. Bork, B. Bhawal, R. Gustafson, W. Kells, M. Landry, D. Sigg, R. Weiss, S. Whitcomb, and H. Yamamoto, “Lock acquisition of a gravitational-wave interferometer,” Opt. Lett. 27, 598–600 (2002). [CrossRef]
  10. The Virgo Collaboration, “Lock acquisition of the Virgo gravitational wave detector,” Astropart. Phys. 30, 29–38 (2008). [CrossRef]
  11. A. J. Mullavey, B. J. J. Slagmolen, J. Miller, M. Evans, P. Fritschel, D. Sigg, S. J. Waldman, D. A. Shaddock, and D. E. McClelland, “Arm-length stabilisation for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers,” Opt. Express 20, 81–89 (2012). [CrossRef]
  12. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett. 32, 3355–3357 (2007). [CrossRef]
  13. O. P. Lay, S. Dubovitsky, D. A. Shaddock, and B. Ware, “Coherent range-gated laser displacement metrology with compact optical head,” Opt. Lett. 32, 2933–2935 (2007). [CrossRef]
  14. Y. Aso, M. Ando, K. Kawabe, S. Otsuka, and K. Tsubono, “Stabilization of a Fabry–Perot interferometer using a suspension-point interferometer,” Phys. Lett. A 327, 1–8 (2004). [CrossRef]
  15. K. Numata and J. Camp, “Interferometric testbed for nanometer level stabilization of environmental motion over long time scales,” Appl. Opt. 47, 6832–6841 (2008). [CrossRef]
  16. O. Miyakawa, R. Ward, R. Adhikari, B. Abbott, R. Bork, D. Busby, M. Evans, H. Grote, J. Heefner, A. Ivanov, S. Kawamura, F. Kawazoe, S. Sakata, M. Smith, R. Taylor, M. Varvella, S. Vass, and A. Weinstein, “Lock acquisition scheme for the advanced ligo optical configuration,” J. Phys. Conf. Ser. 32, 265 (2006). [CrossRef]
  17. O. Miyakawa, R. Ward, R. Adhikari, M. Evans, B. Abbott, R. Bork, D. Busby, J. Heefner, A. Ivanov, M. Smith, R. Taylor, S. Vass, A. Weinstein, M. Varvella, S. Kawamura, F. Kawazoe, S. Sakata, and C. Mow-Lowry, “Measurement of optical response of a detuned resonant sideband extraction gravitational wave detector,” Phys. Rev. D 74, 022001 (2006). [CrossRef]
  18. R. L. Ward, R. Adhikari, B. Abbott, R. Abbott, D. Barron, R. Bork, T. Fricke, V. Frolov, J. Heefner, A. Ivanov, O. Miyakawa, K. McKenzie, B. Slagmolen, M. Smith, R. Taylor, S. Vass, S. Waldman, and A. Weinstein, “DC readout experiment at the Caltech 40 m prototype interferometer,” Class. Quantum Grav. 25, 114030 (2008). [CrossRef]
  19. B. J. Meers, “Recycling in laser-interferometric gravitational-wave detectors,” Phys. Rev. D 38, 2317–2326 (1988). [CrossRef]
  20. J. Mizuno, K. Strain, P. Nelson, J. Chen, R. Schilling, A. Rüdiger, W. Winkler, and K. Danzmann, “Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors,” Phys. Lett. A 175, 273–276 (1993). [CrossRef]
  21. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  22. S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second harmonic generation by PPKTP,” Opt. Commun. 238, 319–327 (2004). [CrossRef]
  23. M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, and G. Ogin, “Thermo-optic noise in coated mirrors for high-precision optical measurements,” Phys. Rev. D 78, 102003 (2008). [CrossRef]
  24. S. Schilt, N. Bucalovic, L. Tombez, V. Dolgovskiy, C. Schori, G. D. Domenico, M. Zaffalon, and P. Thomann, “Frequency discriminators for the characterization of narrow-spectrum heterodyne beat signals: Application to the measurement of a sub-hertz carrier-envelope-offset beat in an optical frequency comb,” Rev. Sci. Instrum. 82, 123116 (2011). [CrossRef]
  25. P. Fritschel, D. McClelland, A. Mullavey, D. Shaddock, B. Slagmolen, and S. Waldman, “Advanced LIGO arm length stabilisation requirements,” LIGO DCC T0900095-v2 (LIGO Document Control Center, 2009).
  26. G. González, “Suspensions thermal noise in the LIGO gravitational wave detector,” Class. Quantum Grav. 17, 4409–4435 (2000). [CrossRef]
  27. G. M. Harry, M. R. Abernathy, A. E. Becerra-Toledo, H. Armandula, E. Black, K. Dooley, M. Eichenfield, C. Nwabugwu, A. Villar, D. R. M. Crooks, G. Cagnoli, J. Hough, C. R. How, I. MacLaren, P. Murray, S. Reid, S. Rowan, P. H. Sneddon, M. M. Fejer, R. Route, S. D. Penn, P. Ganau, J.-M. Mackowski, C. Michel, L. Pinard, and A. Remillieux, “Titania-doped tantala/silica coatings for gravitational-wave detection,” Class. Quantum Grav. 24, 405–415 (2007). [CrossRef]
  28. D. Yeaton-Massey and R. Adhikari, “A new bound on excess frequency noise in second harmonic generation in PPKTP at the 10−19 level,” Opt. Express20, 21019–21024 (2012).
  29. D. H. Wolaver, Phase-Locked Loop Circuit Design (PTR Prentice-Hall, 1991).
  30. M. Principe, I. M. Pinto, V. Pierro, and R. DeSalvo, “Minimum Brownian noise dichroic dielectric mirror coatings for AdLIGO,” LIGO DCC T080337-v1 (LIGO Document Control Center, 2008).
  31. H. Rehbein, H. Müller-Ebhardt, K. Somiya, C. Li, R. Schnabel, K. Danzmann, and Y. Chen, “Local readout enhancement for detuned signal-recycling interferometers,” Phys. Rev. D 76, 062002 (2007). [CrossRef]
  32. A. Buonanno and Y. Chen, “Signal recycled laser-interferometer gravitational-wave detectors as optical springs,” Phys. Rev. D 65, 042001 (2002). [CrossRef]
  33. F. Khalili, S. Danilishin, H. Müller-Ebhardt, H. Miao, Y. Chen, and C. Zhao, “Negative optical inertia for enhancing the sensitivity of future gravitational-wave detectors,” Phys. Rev. D 83, 062003 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited