OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2165–2173

Enhanced image reconstruction of three-dimensional fluorescent assays by subtractive structured-light illumination microscopy

Jong-ryul Choi and Donghyun Kim  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2165-2173 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate improved image reconstruction of structured light illumination for high-resolution imaging of three-dimensional (3D) cell-based assays. For proof of concept, an in situ fluorescence optical detection system was built with a digital micromirror device as a spatial light modulator, for which phase and tilting angle in a grid pattern were varied to implement specific image reconstruction schemes. Subtractive reconstruction algorithms based on structured light illumination were used to acquire images of fluorescent microbeads deposited as a two-dimensional monolayer or in 3D alginate matrix. We have confirmed that an optical subtraction algorithm improves axial and lateral resolution by effectively removing out-of-focus fluorescence. The results suggest that subtractive image reconstruction can be useful for structured illumination microscopy of broad types of cell-based assays with high image resolution.

© 2012 Optical Society of America

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(180.2520) Microscopy : Fluorescence microscopy
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:

Original Manuscript: June 7, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 3, 2012
Published: September 20, 2012

Jong-ryul Choi and Donghyun Kim, "Enhanced image reconstruction of three-dimensional fluorescent assays by subtractive structured-light illumination microscopy," J. Opt. Soc. Am. A 29, 2165-2173 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature 442, 403–411 (2006). [CrossRef]
  2. T. Oh, J. H. Sung, D. A. Tatosian, M. L. Shuler, and D. Kim, “Real-time fluorescence detection of multiple microscale cell culture analog devices in situ,” Cytometry A 71A, 857–865 (2007). [CrossRef]
  3. K. Kim, E.-J. Cho, Y.-M. Huh, and D. Kim, “Thin film-based sensitivity enhancement for total internal reflection fluorescence live-cell imaging,” Opt. Lett. 32, 3062–3064 (2007). [CrossRef]
  4. A. Bullen, “Microscopic imaging techniques for drug discovery,” Nat. Rev. Drug Discov. 7, 54–67 (2008). [CrossRef]
  5. J. H. Sung, J. Choi, D. Kim, and M. L. Shuler, “Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices,” Biotechnol. Bioeng. 104, 516–525 (2009). [CrossRef]
  6. K. Kim, D. J. Kim, E.-J. Cho, J.-S. Suh, Y.-M. Huh, and D. Kim, “Nanograting-based plasmon enhancement for total internal reflection fluorescence microscopy of live cells,” Nanotechnology 20, 015202 (2009). [CrossRef]
  7. J. Choi, J. H. Sung, M. L. Shuler, and D. Kim, “Investigation of portable in situ fluorescence optical detection for microfluidic 3D cell culture assays,” Opt. Lett. 35, 1374–1376 (2010). [CrossRef]
  8. D. A. Tatosian, M. L. Shuler, and D. Kim, “Portable in situ fluorescence cytometry of microscale cell-based assays,” Opt. Lett. 30, 1689–1691 (2005). [CrossRef]
  9. J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2, 920–931 (2005). [CrossRef]
  10. J.-A. Conchello, J. J. Kim, and E. W. Hansen, “Enhanced three-dimensional reconstruction from confocal scanning microscope images. II. Depth discrimination versus signal-to-noise ratio in partially confocal images,” Appl. Opt. 33, 3740–3750 (1994). [CrossRef]
  11. D. R. Sandison, D. Piston, R. M. Williams, and W. W. Webb, “Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and full-field laser scanning microscope,” Appl. Opt. 34, 3576–3588 (1995). [CrossRef]
  12. J. Choi, K. Kim, and D. Kim, “In situ fluorescence optical detection using a digital micromirror device (DMD) for 3D cell-based assays,” J. Opt. Soc. Korea 16, 42–46 (2012). [CrossRef]
  13. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997). [CrossRef]
  14. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000). [CrossRef]
  15. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081–13086 (2005). [CrossRef]
  16. M. G. Somekh, K. Hsu, and M. C. Pitter, “Stochastic transfer function for structured illumination microscopy,” J. Opt. Soc. Am. A 26, 1630–1637 (2009). [CrossRef]
  17. M. G. Somekh, K. Hsu, and M. C. Pitter, “Resolution in structured illumination microscopy: a probabilistic approach,” J. Opt. Soc. Am. A 25, 1319–1329 (2008). [CrossRef]
  18. L. Schermelleh, P. M. Carlton, S. Haase, L. Shao, L. Winoto, P. Kner, B. Bruke, M. C. Cardoso, D. A. Agard, M. G. L. Gustafsson, H. Leonhardt, and J. W. Sedat, “Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy,” Science 320, 1332–1336 (2008). [CrossRef]
  19. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009). [CrossRef]
  20. R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, “Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination,” Proc. Natl. Acad. Sci. U.S.A. 109, 5311–5315 (2012). [CrossRef]
  21. M. A. A. Neil, A. Squire, R. Juskaitis, P. I. H. Bastiaens, and T. Wilson, “Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197, 1–4 (2000). [CrossRef]
  22. T. Wilson, M. A. A. Neil, and R. Juskaitis, “Real-time three-dimensional imaging of macroscopic structures,” J. Microsc. 191, 116–118 (1998). [CrossRef]
  23. C. H. Wong, N. G. Chen, and C. J. R. Sheppard, “Study on potential of structured illumination microscopy utilizing digital micromirror device for endoscopy purpose,” in Biophotonics, Nanophotonics and Metamaterials, 2006, International Symposium on Metamaterials (IEEE, 2006), pp. 218–222.
  24. L. Wang, M. C. Pitter, and M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36, 2794–2796 (2011). [CrossRef]
  25. E. Sanchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martinez-Corral, A. Doblas, and A. Calatayud, “Subtractive imaging in confocal scanning microscopy using a CCD camera as a detector,” Opt. Lett. 37, 1280–1282 (2012). [CrossRef]
  26. R. Heintzmann, V. Sarafis, P. Munroe, J. Nailon, Q. S. Hanley, and T. M. Jovin, “Resolution enhancement by subtractive of confocal signals taken at different pinhole sizes,” Micron 34, 293–300 (2003). [CrossRef]
  27. G. Boyer and V. Sarafis, “Two pinhole superresolution using spatial filters,” Optik 112, 177–179 (2001). [CrossRef]
  28. M. Martinez-Corral, M. T. Caballero, C. Ibanez-Lopez, and V. Sarafis, “Optical sectioning by two-pinhole confocal fluorescence microscopy,” Micron 34, 313–318 (2003). [CrossRef]
  29. S. J. Hewlett and T. Wilson, “Resolution enhancement in three-dimensional confocal microscopy,” Machine Vis. Appl. 4, 233–242 (1991). [CrossRef]
  30. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, and J. Swoger, “Tailoring the axial shape of the point spread function using the Toraldo concept,” Opt. Express 10, 98–103 (2002).
  31. G. Boyer, “New class of axially apodizing filters for confocal scanning microscopy,” J. Opt. Soc. Am. A 19, 584–589 (2002). [CrossRef]
  32. T. Fukano and A. Miyawaki, “Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples,” Appl. Opt. 42, 4119–4124 (2003). [CrossRef]
  33. T. Fukano, A. Sawano, Y. Ohba, M. Matsuda, and A. Miyawaki, “Differential Ras activation between caveolae/raft and non-raft microdomains,” Cell Struct. Funct. 32, 9–15 (2007). [CrossRef]
  34. S. Delica and C. M. Blanca, “Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination,” Appl. Opt. 46, 7237–7243 (2007). [CrossRef]
  35. F. Pampaloni, E. G. Reynaud, and E. H. K. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007). [CrossRef]
  36. B. A. Justice, N. A. Badr, and R. A. Felder, “3D cell culture opens new dimensions in cell-based assays,” Drug Discovery Today 14(1–2), 102–107 (2009). [CrossRef]
  37. J. A. Rowley, G. Madlambayan, and D. J. Mooney, “Alginate hydrogels as synthetic extracellular matrix materials,” Biomaterials 20, 45–53 (1999). [CrossRef]
  38. M. W. Tibbitt and K. S. Anseth, “Hydrogel as extracellular matrix mimics for 3D cell culture,” Biotechnol. Bioeng. 103, 655–663 (2009). [CrossRef]
  39. B. M. Gillett, J. A. Jensen, B. Tang, G. J. Yang, A. Bazargan-Lari, M. Zhong, and S. K. Sia, “In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices,” Nat. Mater. 7, 636–640 (2008). [CrossRef]
  40. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002). [CrossRef]
  41. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Leve, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2001). [CrossRef]
  42. L. H. Schaefer, D. Shuster, and J. Schaffer, “Structured illumination microscopy: artifact analysis and reduction utilizing a parameter optimization approach,” J. Microsc. 216, 165–174 (2004). [CrossRef]
  43. T. Xian and X. Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40, 1201–1206 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited