OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2181–2189

Spectral recovery of outdoor illumination by an extension of the Bayesian inverse approach to the Gaussian mixture model

Shahram Peyvandi, Seyed Hossein Amirshahi, Javier Hernández-Andrés, Juan Luis Nieves, and Javier Romero  »View Author Affiliations


JOSA A, Vol. 29, Issue 10, pp. 2181-2189 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002181


View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Bayesian inference approach to the inverse problem of spectral signal recovery has been extended to mixtures of Gaussian probability distributions of a training dataset in order to increase the efficiency of estimating the spectral signal from the response of a transformation system. Bayesian (BIC) and Akaike (AIC) information criteria were assessed in order to provide the Gaussian mixture model (GMM) with the optimum number of clusters within the spectral space. The spectra of 2600 solar illuminations measured in Granada (Spain) were recovered over the range of 360–830 nm from their corresponding tristimulus values using a linear model of basis functions, the Wiener inverse (WI) method, and the Bayesian inverse approach extended to the GMM (BGMM). A model of Gaussian mixtures for solar irradiance was deemed to be more appropriate than a single Gaussian distribution for representing the probability distribution of the solar spectral data. The results showed that the estimation performance of the BGMM method was better than either the linear model or the WI method for the spectral approximation of daylight from the three-dimensional tristimulus values.

© 2012 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(100.3190) Image processing : Inverse problems
(330.1690) Vision, color, and visual optics : Color
(330.1730) Vision, color, and visual optics : Colorimetry

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 23, 2012
Revised Manuscript: July 29, 2012
Manuscript Accepted: August 13, 2012
Published: September 21, 2012

Citation
Shahram Peyvandi, Seyed Hossein Amirshahi, Javier Hernández-Andrés, Juan Luis Nieves, and Javier Romero, "Spectral recovery of outdoor illumination by an extension of the Bayesian inverse approach to the Gaussian mixture model," J. Opt. Soc. Am. A 29, 2181-2189 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-10-2181


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Parkkinen, J. Hallikainen, and T. Jääskeläinen, “Characteristic spectra of Munsell colors,” J. Opt. Soc. Am. A 6, 318–322 (1989). [CrossRef]
  2. A. Garcia-Beltrán, J. L. Nieves, J. Hernández-Andrés, and J. Romero, “Linear bases for spectral reflectance functions of acrylic paints,” Color Res. Appl. 23, 39–45 (1998). [CrossRef]
  3. G. Healey and L. Benites, “Linear models for spectral reflectance functions over the mid-wave and long-wave infrared,” J. Opt. Soc. Am. A 15, 2216–2227 (1998). [CrossRef]
  4. C. Chiao, D. Osorio, M. Vorobyev, and T. W. Cronin, “Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra,” J. Opt. Soc. Am. A 17, 1713–1721 (2000). [CrossRef]
  5. A. K. Romney and T. Indow, “A model for the simultaneous analysis of reflectance spectra and basis factors of Munsell color samples under D65 illumination in three-dimensional euclidean space,” Proc. Natl. Acad. Sci. USA 99, 11543–11546 (2002). [CrossRef]
  6. O. Kohonen, J. Parkkinen, and T. Jääskeläinen, “Databases for spectral color science,” Color Res. Appl. 31, 381–390 (2006). [CrossRef]
  7. T. Indow and A. K. Romney, “Reflectance spectra of Munsell standard chips and their appearance,” Color Res. Appl. 33, 229–237 (2008). [CrossRef]
  8. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formula (Wiley, 1982).
  9. S. R. Das and V. D. P. Sastri, “Spectral distribution and color of tropical daylight,” J. Opt. Soc. Am. 55, 319–322 (1965). [CrossRef]
  10. S. R. Das and V. D. P. Sastri, “Spectral distribution and color of north sky at Delhi,” J. Opt. Soc. Am. 56, 829–830 (1966). [CrossRef]
  11. S. R. Das and V. D. P. Sastri, “Typical spectral distributions and color for tropical daylight,” J. Opt. Soc. Am. 58, 391–398 (1968). [CrossRef]
  12. E. Dixon, “Spectral distribution of Australian daylight,” J. Opt. Soc. Am. 68, 437–450 (1978). [CrossRef]
  13. J. Hernández-Andrés, J. Romero, J. L. Nieves, and R. L. Lee, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325–1335 (2001). [CrossRef]
  14. J. B. Cohen, “Dependency of the spectral reflectance curves of the Munsell color chips,” Psychonomic Sci. 1, 369–370(1994).
  15. D. B. Judd, D. L. MacAdam, G. Wyszecki, H. W. Budde, H. R. Condit, S. T. Henderson, and J. L. Simonds, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031–1040 (1964). [CrossRef]
  16. L. T. Maloney, and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef]
  17. L. T. Maloney, “Evaluation of linear models of surface spectral reflectance with small numbers of parameters,” J. Opt. Soc. Am. A 3, 1673–1683 (1986). [CrossRef]
  18. D. H. Marimont, and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913(1992). [CrossRef]
  19. J. Romero, A. Garcia-Beltrán, and J. Hernández-Andrés, “Linear bases for representation of natural and artificial illuminants,” J. Opt. Soc. Am. A 14, 1007–1014 (1997). [CrossRef]
  20. J. Hernández-Andrés, J. Romero, A. Garcia-Beltrán, and J. L. Nieves, “Testing linear models on spectral daylight measurements,” Appl. Opt. 37, 971–977 (1998). [CrossRef]
  21. J. Hernández-Andrés, J. L. Nieves, E. M. Valero, and J. Romero, “Spectral-daylight recovery by use of only a few sensors,” J. Opt. Soc. Am. A 21, 13–23 (2004). [CrossRef]
  22. D. Slater, and G. Healey, “Analyzing the spectral dimensionality of outdoor visible and near-infrared illumination functions,” J. Opt. Soc. Am. A 15, 2913–2920 (1998). [CrossRef]
  23. Z. Pan, G. Healey, and D. Slater, “Global spectral irradiance variability and material discrimination at Boulder, Colorado,” J. Opt. Soc. Am. A 20, 513–521 (2003). [CrossRef]
  24. D. H. Brainard, “Bayesian method for reconstructing color images from trichromatic samples,” in Proceedings of the IS&T 47th Annual Conference (IS&T, 1995), pp. 375–380.
  25. H. S. Fairman, and M. H. Brill, “The principal components of reflectances,” Color Res. Appl. 29, 104–110 (2004). [CrossRef]
  26. F. M. Abed, S. H. Amirshahi, S. Peyvandi, and M. R. M. Abed, “Reconstruction of the reflectance curves by using interpolation method,” in Proceedings of AIC 2007—Color Science for Industry, midterm meeting of the International Color Association (2007).
  27. F. Agahian, S. A. Amirshahi, and S. H. Amirshahi, “Reconstruction of reflectance spectra using weighted principal component analysis,” Color Res. Appl. 33, 360–371 (2008). [CrossRef]
  28. T. Harfi, S. H. Amirshahi, and F. Agahian, “Recovery of reflectance spectra from colorimetric data using principal component analysis embedded regression technique,” Opt. Rev. 15, 302–308 (2008). [CrossRef]
  29. T. Eslahi, S. H. Amirshahi, and F. Agahian, “Recovery of spectral data using weighted canonical correlation regression,” Opt. Rev. 16, 296–303 (2009). [CrossRef]
  30. S. A. Amirshahi, and S. H. Amirshahi, “Adaptive non-negative bases for reconstruction of spectral data from colorimetric information,” Opt. Rev. 17, 562–569 (2010). [CrossRef]
  31. S. Peyvandi, and S. H. Amirshahi, “Generalized spectral decomposition: a theory and practice to spectral reconstruction,” J. Opt. Soc. Am. A 28, 1545–1553 (2011). [CrossRef]
  32. Y. Murakami, K. Fukura, M. Yamaguchi, and N. Ohyama, “Color reproduction from low-snr multispectral images using spatio-spectral wiener estimation,” Opt. Express 16, 4106–4120(2008). [CrossRef]
  33. N. Shimano, “Recovery of spectral reflectances of objects being imaged without prior knowledge,” IEEE Trans. Image Process. 15, 1848–1856 (2006). [CrossRef]
  34. N. Shimano, K. Terai, and M. Hironaga, “Recovery of spectral reflectances of objects being imaged by multispectral cameras,” J. Opt. Soc. Am. A 24, 3211–3219 (2007). [CrossRef]
  35. N. Shimano, “Optimization of spectral sensitivities with gaussian distribution functions for a color image acquisition device in the presence of noise,” Opt. Eng. 45, 013201 (2006). [CrossRef]
  36. N. Shimano, and M. Hironaga, “Recovery of spectral reflectances of imaged objects by the use of features of spectral reflectances,” J. Opt. Soc. Am. A 27, 251–258 (2010). [CrossRef]
  37. A. Mohammad-Djafari, “Bayesian inference for inverse problems in signal and image processing and applications,” Int. J. Imaging Syst. Tech. 16, 209–214 (2006). [CrossRef]
  38. M. Bertero, and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998).
  39. D. Tzeng, and R. S. Berns, “A review of principal component analysis and its applications to color technology,” Color Res. Appl. 30, 84–98 (2005). [CrossRef]
  40. D. H. Brainard and W. T. Freeman, “Bayesian color constancy,” J. Opt. Soc. Am. A 14, 1393–1411 (1997). [CrossRef]
  41. V. Heikkinen, R. Lenz, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, and T. Jääskeläinen, “Evaluation and unification of some methods for estimating reflectance spectra from RGB images,” J. Opt. Soc. Am. A 25, 2444–2458 (2008). [CrossRef]
  42. Y. Murakami, K. Ietom, M. Yamaguchi, and N. Ohyama, “Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46, 7068–7082 (2007). [CrossRef]
  43. D. Attewell and R. J. Baddeley, “The distribution of reflectances within the visual environment,” Vis. Res. 47, 548–554 (2007). [CrossRef]
  44. Y. Murakami, T. Obi, M. Yamaguchi, and N. Ohyama, “Nonlinear estimation of spectral reflectance based on gaussian mixture distribution for color image reproduction,” Appl. Opt. 41, 4840–4847 (2002). [CrossRef]
  45. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability(University of California, 1967), pp. 281–297.
  46. A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. R. Stat. Soc. Ser. B. Methodol. 39B, 1–38 (1977).
  47. M. A. T. Figueiredo and A. K. Jain, “Unsupervised learning of finite mixture models,” IEEE Trans. Pattern Anal. Machine Intell. 24, 381–396 (2002). [CrossRef]
  48. G. McLachlan and D. Peel, Finite Mixture Models (Wiley, 2000).
  49. A. R. Liddle, “Information criteria for astrophysical model selection,” Mon. Not. R. Astron. Soc. 377, L74–L78 (2007). [CrossRef]
  50. H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom. Control 19, 716–723 (1974). [CrossRef]
  51. G. Schwarz, “Estimating the dimension of a model,” Ann. Stat. 6, 461–464 (1978). [CrossRef]
  52. D. A. Harville, Matrix Algebra From A Statistician’s Prespective (Springer, 2008), pp. 419–420.
  53. A. J. Laub, Matrix Analysis for Scientists & Engineers (SIAM, 2005), p. 48.
  54. K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” http://matrixcookbook.com (14Nov.2008).
  55. M. F. Huber, T. Bailey, H. Durrant-Whyte, and U. D. Hanebeck, “On entropy approximation for gaussian mixture random vectors,” in IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (IEEE, 2008), pp. 181–188.
  56. P. S. Dwyer, “Some applications of matrix derivatives in multivariate analysis,” J. Am. Stat. Assoc. 62, 607–625 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited