OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2197–2203

Modeling of transient dynamics in two-dimensional circular microresonators using the pulsed complex source point beam concept

Nataliya K. Sakhnenko, Arkadi Chipouline, Carsten Schmidt, Alexander G. Nerukh, and Thomas Pertsch  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2197-2203 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (851 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analytical method for transient dynamics description in microresonators is used to characterize and visualize the transient effects. In the frame of this method, the pulsed complex source point concept is used to simulate an incident transient beam. The excited fields in the microcavity are described by means of a rigorous mathematical approach that is based on the analytical solution in the Laplace transform domain and accurate evaluation of residues at singular points corresponding to the excited modes. The effects of transient mode beating and ultrashort pulse splitting inside the microresonator for short pulse excitation are discussed.

© 2012 Optical Society of America

OCIS Codes
(320.5390) Ultrafast optics : Picosecond phenomena
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Ultrafast Optics

Original Manuscript: August 2, 2012
Revised Manuscript: September 1, 2012
Manuscript Accepted: September 1, 2012
Published: September 24, 2012

Nataliya K. Sakhnenko, Arkadi Chipouline, Carsten Schmidt, Alexander G. Nerukh, and Thomas Pertsch, "Modeling of transient dynamics in two-dimensional circular microresonators using the pulsed complex source point beam concept," J. Opt. Soc. Am. A 29, 2197-2203 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  2. M. Fujita, A. Sakai, and T. Baba, “Ultrasmall and ultralow threshold GaInAsP-InP microdisk injection lasers: design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673–681 (1999). [CrossRef]
  3. K. Djordjev, S.-J. Choi, S.-J. Choi, and R. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photon. Technol. Lett. 14, 823–830 (2002). [CrossRef]
  4. M. Lee and P. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32, 3284–3286 (2007). [CrossRef]
  5. M. Hill, H. Dorren, T. Vries, X. Leitjens, J. Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. Smit, “A fast low-power optical memory based upon coupled micro-ring lasers,” Nature 432, 206–209 (2004). [CrossRef]
  6. R. Shaw, W. Whitten, M. Barnes, and J. Ramsey, “Time-domain observation of optical pulse propagation in whispering-gallery modes of glass spheres,” Opt. Lett. 23, 1301–1303 (1998). [CrossRef]
  7. H. Gersen, D. Klunder, J. Korterik, A. Driessen, N. Hulst, and L. Kuipers, “Propagation of a femtosecond pulse in a microresonator visualized in time,” Opt. Lett. 29, 1291–1293 (2004). [CrossRef]
  8. M. Balistreri, D. Klunder, F. Blom, A. Driessen, H. Hoekstra, J. Korterik, L. Kuipers, and N. Hulst, “Visualizing the whispering-gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999). [CrossRef]
  9. A. Driessen, D. H. Geuzebroek, E. J. Klein, R. Dekker, R. Stoffer, and C. Bornholdt, “Propagation of short light pulses in microring resonators: Ballistic transport versus interference in the frequency domain,” Opt. Commun. 270, 217–224 (2007). [CrossRef]
  10. A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008). [CrossRef]
  11. C. Baum, “On singularity expansion method for the solution of electromagnetic interaction problems,” Interact. Notes 88, 1–111 (1971).
  12. C. Baum, “Discrimination of buried targets via the singularity expansion,” Inverse Probl. 13, 557–570 (1997). [CrossRef]
  13. L. Marin, “Natural-mode representation of transient scattered fields,” IEEE Trans. Antennas Propag. AP-21, 809–818 (1973). [CrossRef]
  14. N. Sakhnenko and A. Nerukh, “Rigorous analysis of whispering gallery mode frequency conversion due to time variation of refractive index in a spherical resonator,” J. Opt. Soc. Am. A 29, 99–104 (2012). [CrossRef]
  15. N. K. Sakhnenko, A. G. Nerukh, T. Benson, and P. Sewell, “Frequency conversion and field pattern rotation in WGM resonator with transient inclusion,” Opt. Quantum Electron. 39, 761–771 (2007). [CrossRef]
  16. L. Felsen, “Complex-point source solutions of the field equations and their relation to the propagation and scattering of the Gaussian beams,” Simposia Math. 18, 40–56 (1976).
  17. E. Heyman and L. Felsen, “Complex-source pulsed beam fields,” J. Opt. Soc. Am. A 6, 806–817 (1989). [CrossRef]
  18. E. Heyman and L. Felsen, “Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics,” J. Opt. Soc. Am. A 18, 1588–1611 (2001). [CrossRef]
  19. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, V. Shuvayev, L. I. Deych, and T. Pertsch, “Observation of optical coupling in microdisk resonators,” Phys. Rev. A 80, 043841 (2009). [CrossRef]
  20. E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005). [CrossRef]
  21. L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice Hall, 1973).
  22. A. V. Boriskin and A. I. Nosich, “Whispering-gallery and Luneburg-lens effects in a beam-fed circularly layered dielectric cylinder,” IEEE Trans. Antennas Propag. 50, 1245–1249 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited