OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2217–2225

Color constancy by chromaticity neutralization

Feng-Ju Chang, Soo-Chang Pei, and Wei-Lun Chao  »View Author Affiliations


JOSA A, Vol. 29, Issue 10, pp. 2217-2225 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002217


View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, a robust illuminant estimation algorithm for color constancy is proposed. Considering the drawback of the well-known max-RGB algorithm, which regards only pixels with the maximum image intensities, we explore the representative pixels from an image for illuminant estimation: The representative pixels are determined via the intensity bounds corresponding to a certain percentage value in the normalized accumulative histograms. To achieve the suitable percentage, an iterative algorithm is presented by simultaneously neutralizing the chromaticity distribution and preventing overcorrection. The experimental results on the benchmark databases provided by Simon Fraser University and Microsoft Research Cambridge, as well as several web images, demonstrate the effectiveness of our approach.

© 2012 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2980) Image processing : Image enhancement
(150.2950) Machine vision : Illumination
(330.1720) Vision, color, and visual optics : Color vision
(150.1135) Machine vision : Algorithms

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: June 28, 2012
Revised Manuscript: August 26, 2012
Manuscript Accepted: August 27, 2012
Published: September 26, 2012

Citation
Feng-Ju Chang, Soo-Chang Pei, and Wei-Lun Chao, "Color constancy by chromaticity neutralization," J. Opt. Soc. Am. A 29, 2217-2225 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-10-2217


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gijsenij, T. Gevers, and J. van de Weijer, “Computational color constancy: survey and experiments,” IEEE Trans. Image Process. 20, 2475–2489 (2011). [CrossRef]
  2. D. H. Foster, “Color constancy,” Vis. Res. 51, 674–700 (2011). [CrossRef]
  3. J. M. Geusebroek, R. V. D. Boomgaard, and A. W. M. Smeulders, “Color invariance,” IEEE Trans. PAMI 23, 1338–1350 (2001). [CrossRef]
  4. T. Gevers and A. W. M. Smeulders, “Color based object recognition,” Pattern Recogn. 32, 453–464 (1999). [CrossRef]
  5. E. H. Land and J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. A 61, 1–11 (1971). [CrossRef]
  6. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980). [CrossRef]
  7. G. D. Finlayson and E. Trezzi, “Shades of gray and color constancy,” in Proceedings of the 12th Color Imaging Conference (IS&T/SID, 2004), pp. 37–41.
  8. J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based color constancy,” IEEE Trans. Image Process. 16, 2207–2214 (2007). [CrossRef]
  9. D. Forsth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5, 5–36 (1990). [CrossRef]
  10. A. Gijsenij, T. Gevers, and J. van de Weijer, “Generalized gamut mapping using image derivative structures for color constancy,” Int. J. Comput. Vis. 86, 127–139 (2010). [CrossRef]
  11. G. D. Finlayson, S. D. Hordley, and R. Xu, “Convex programming colour constancy with a diagonal-offset model,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2005), pp. 948–951.
  12. R. T. Tan, K. Nishino, and K. Ikeuchi, “Illumination chromaticity estimation using inverse-intensity chromaticity space,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2003), pp. 673–680.
  13. K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color constancy algorithms—Part II: experiments with image data,” IEEE Trans. Image Process. 11, 985–996 (2002). [CrossRef]
  14. B. Funt and L. Shi, “MaxRGB reconsidered,” J. Imaging Sci. Technol. 56, 20501 (2012). [CrossRef]
  15. F. Gasparini and R. Schettini, “Color balancing of digital photos using simple image statistics,” Pattern Recogn. 37, 1201–1217 (2004). [CrossRef]
  16. S. Tominaga, S. Ebisui, and B. A. Wandell, “Scene illuminant classification: brighter is better,” J. Opt. Soc. Am. A 18, 55–64 (2001). [CrossRef]
  17. K. Barnard, L. Martin, B. Funt, and A. Coath, “A data set for color research,” Color Res. Appl. 27, 147–151 (2002). [CrossRef]
  18. P. V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, “Bayesian color constancy revisited,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2008), pp. 1–8.
  19. A. Gijsenij, T. Gevers, and M. Lucassen, “A perceptual analysis of distance measures for color constancy algorithms,” J. Opt. Soc. Am. A 26, 2243–2256 (2009). [CrossRef]
  20. S. Hordley and G. Finlayson, “Reevaluation of color constancy algorithm performance,” J. Opt. Soc. Am. A 23, 1008–1020 (2006). [CrossRef]
  21. A. Gijsenij and T. Gevers, “Color constancy: research website on illuminant estimation,” http://colorconstancy.com .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited