OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2237–2241

Gaussian beam photothermal single particle microscopy

Markus Selmke, Marco Braun, and Frank Cichos  »View Author Affiliations

JOSA A, Vol. 29, Issue 10, pp. 2237-2241 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the intuitive lensing picture of laser-heated nanoparticles occurring in single particle photothermal (PT) microscopy. The effective focal length of the thermal lens (TL) is derived from a ray-optics treatment and used to transform the probing focused Gaussian beam with ABCD Gaussian matrix optics. The relative PT signal is obtained from the relative beam-waist change far from the TL. The analytical expression is semiquantitative, capable of describing the entire phenomenology of single particle PT microscopy, and shows that the signal is the product of the point-spread functions of the involved lasers times a linear function of the axial coordinate. The presented particularly simple and intuitive Gaussian beam lensing picture compares favorably to the experimental results for 60 nm gold nanoparticles and provides the prescription for optimum setup calibration.

© 2012 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(110.6820) Imaging systems : Thermal imaging
(190.4870) Nonlinear optics : Photothermal effects

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: May 29, 2012
Manuscript Accepted: August 31, 2012
Published: September 28, 2012

Markus Selmke, Marco Braun, and Frank Cichos, "Gaussian beam photothermal single particle microscopy," J. Opt. Soc. Am. A 29, 2237-2241 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
  2. S. Berciaud, L. Cognet, G. Blab, and B. Lounis, “Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals,” Phys. Rev. Lett. 93, 257402 (2004). [CrossRef]
  3. S. Berciaud, L. Cognet, and B. Lounis, “Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes,” Phys. Rev. Lett. 101, 077402 (2008). [CrossRef]
  4. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, “Room-temperature detection of a single molecule’s absorption by photothermal contrast,” Science 330, 353–356 (2010). [CrossRef]
  5. S. Berciaud, L. Cognet, and B. Lounis, “Photothermal absorption spectroscopy of individual semiconductor nanocrystals,” Nano Lett. 5, 2160–2163 (2005). [CrossRef]
  6. D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, “Hot Brownian motion,” Phys. Rev. Lett. 105, 090604(2010). [CrossRef]
  7. D. Rings, M. Selmke, F. Cichos, and K. Kroy, “Theory of hot Brownian motion,” Soft Matter 7, 3441–3452 (2011). [CrossRef]
  8. R. Radünz, D. Rings, K. Kroy, and F. Cichos, “Hot Brownian particles and photothermal correlation spectroscopy,” J. Phys. Chem. A 113, 1674–1677 (2009). [CrossRef]
  9. P. M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009). [CrossRef]
  10. S. Berciaud, D. Lasne, G. Blab, L. Cognet, and B. Lounis, “Photothermal heterodyne imaging of individual metallic nanoparticles: theory versus experiment,” Phys. Rev. B 73, 045424 (2006). [CrossRef]
  11. M. Selmke, M. Braun, and F. Cichos, “Photothermal single particle microscopy, detection of a nano-lens,” ACS Nano 6, 2741–2749 (2012). [CrossRef]
  12. S. Bialcowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, 1996).
  13. J. Moreau and V. Loriette, “Confocal dual-beam thermal-lens microscope: model and experimental results,” Jpn. J. Appl. Phys. 1, 7141–7151 (2006). [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).
  15. J. Evans and M. Rosenquist “’F=ma’ optics,” Am. J. Phys. 54, 876–883 (1986). [CrossRef]
  16. J. Sivardière, “Perturbed elliptic motion,” Eur. J. Phys. 7, 283–286 (1986). [CrossRef]
  17. A. A. Rangwala, V. H. Kulkarni, and A. A. Rindani, “Laplace Runge Lenz vector for a light ray trajectory in r−1 media,” Am. J. Phys. 69, 803–809 (2001). [CrossRef]
  18. M. Selmke, R. Schachoff, M. Braun, and F. Cichos, “Twin-focus photothermal correlation spectroscopy,” RSC Adv. (submitted).
  19. M. Selmke, M. Braun, and F. Cichos, “Nano-lens diffraction around a single heated nano particle,” Opt. Express 20, 8055–8070 (2012). [CrossRef]
  20. G. Gouesbet, B. Maheu, and G. Gréhan, “Light-scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443(1988). [CrossRef]
  21. K. Ren, G. Gréhan, and G. Gouesbet, “Localized approximation of generalized Lorenz Mie theory: faster algorithm for computations of beam shape coefficients, gnm,” Part. Part. Syst. Charact. 9, 144–150 (1992). [CrossRef]
  22. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, and M. Orrit, “Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level,” Phys. Chem. Chem. Phys. 13, 149–153 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited