OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2307–2313

Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures

Evgeni A. Bezus and Leonid L. Doskolovich  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2307-2313 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002307


View Full Text Article

Enhanced HTML    Acrobat PDF (363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the present work, a stable algorithm for the calculation of the electromagnetic field distributions of the eigenmodes of one-dimensional diffraction gratings is presented. The proposed approach is based on the method for the computation of the propagation constants of Bloch waves of such structures previously presented by Cao et al. [J. Opt. Soc. Am. A 19, 335 (2002)] and uses a modified S-matrix algorithm to ensure numerical stability.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1970) Diffraction and gratings : Diffractive optics
(130.2790) Integrated optics : Guided waves
(230.7390) Optical devices : Waveguides, planar
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 3, 2012
Revised Manuscript: September 13, 2012
Manuscript Accepted: September 17, 2012
Published: October 11, 2012

Citation
Evgeni A. Bezus and Leonid L. Doskolovich, "Stable algorithm for the computation of the electromagnetic field distribution of eigenmodes of periodic diffraction structures," J. Opt. Soc. Am. A 29, 2307-2313 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2307


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  2. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  3. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  4. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  5. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  6. M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic Fourier modal method in contrast-field from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010). [CrossRef]
  7. M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Modified S-matrix algorithm for the aperiodic Fourier modal method in contrast-field formulation,” J. Opt. Soc. Am. A 28, 1364–1371 (2011). [CrossRef]
  8. Q. Cao, P. Lalanne, and J.-P. Hugonin, “Stable and efficient Bloch-mode computational method for one-dimensional grating waveguides,” J. Opt. Soc. Am. A 19, 335–338 (2002). [CrossRef]
  9. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007). [CrossRef]
  10. T. Vallius, J. Tervo, P. Vahimaa, and J. Turunen, “Electromagnetic field computation in semiconductor laser resonators,” J. Opt. Soc. Am. A 23, 906–911 (2006). [CrossRef]
  11. E. L. Tan, “Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings,” J. Mod. Opt. 53, 417–428 (2006). [CrossRef]
  12. J. Ning and E. L. Tan, “Generalized eigenproblem of hybrid matrix for Bloch–Floquet waves in one-dimensional photonic crystals,” J. Opt. Soc. Am. B 26, 676–683 (2009). [CrossRef]
  13. Z. S. Sacks, D. M. Kingsland, R. Lee, and J.-Fa Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  14. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  15. E. L. Tan, “Note on formulation of the enhanced scattering- (transmittance-) matrix approach,” J. Opt. Soc. Am. A 19, 1157–1161 (2002). [CrossRef]
  16. K. C. Chang, V. Shah, and T. Tamir, “Scattering and guiding of waves by dielectric gratings with arbitrary profiles,” J. Opt. Soc. Am. 70, 804–813 (1980). [CrossRef]
  17. E. A. Bezus, D. A. Bykov, L. L. Doskolovich, and I. I. Kadomin, “Diffraction gratings for generating varying-period interference patterns of surface plasmons,” J. Opt. A Pure Appl. Opt. 10, 095204 (2008). [CrossRef]
  18. P. Lalanne and M. P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998). [CrossRef]
  19. E. A. Bezus, L. L. Doskolovich, and N. L. Kazanskiy, “Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings,” Microelectron. Eng. 88, 170–174 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited