OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2314–2327

Surface integral formulations for the design of plasmonic nanostructures

Carlo Forestiere, Giovanni Iadarola, Guglielmo Rubinacci, Antonello Tamburrino, Luca Dal Negro, and Giovanni Miano  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2314-2327 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002314


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this paper, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N -combined region integral equations, the T -combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations and their limitations can have a high impact on the engineering of numerous nano-scale optical devices such as plasmon-enhanced light emitters, biosensors, photodetectors, and nanoantennas.

© 2012 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optoelectronics

History
Original Manuscript: June 18, 2012
Manuscript Accepted: August 22, 2012
Published: October 16, 2012

Citation
Carlo Forestiere, Giovanni Iadarola, Guglielmo Rubinacci, Antonello Tamburrino, Luca Dal Negro, and Giovanni Miano, "Surface integral formulations for the design of plasmonic nanostructures," J. Opt. Soc. Am. A 29, 2314-2327 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2314

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited