OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2350–2359

Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens

Rui Chen, Krishna Agarwal, Yu Zhong, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2350-2359 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002350


View Full Text Article

Enhanced HTML    Acrobat PDF (1029 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general model of a subsurface microscopy system based on an aplanatic solid immersion lens (ASIL) is presented. This model is composed of three components: generation of incident light into the ASIL, interaction of the incident light with the sample, and imaging of the scattered light. Interaction of incident light with sample can be calculated numerically using electromagnetic scattering theory, while vector diffraction theory is used to treat the other two components. Examples of imaging small and extended scatterers are shown. For small scatterers, we show the differences between the actual resolution of the whole system and the resolution predicted by considering only one subsystem of the whole system. For extended scatterers, two types of illuminations—focusing light illumination and plane wave direct illumination—are used to image the scatterers, and observations are explained using interaction of the incident light with the sample.

© 2012 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(260.2110) Physical optics : Electromagnetic optics
(110.1758) Imaging systems : Computational imaging
(290.5855) Scattering : Scattering, polarization

ToC Category:
Imaging Systems

History
Original Manuscript: July 13, 2012
Revised Manuscript: September 22, 2012
Manuscript Accepted: September 23, 2012
Published: October 18, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Rui Chen, Krishna Agarwal, Yu Zhong, Colin J. R. Sheppard, Jacob C. H. Phang, and Xudong Chen, "Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens," J. Opt. Soc. Am. A 29, 2350-2359 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2350


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990). [CrossRef]
  2. Hamamatsu Photonics, K. K., “Solid immersion lens,” http://jp.hamamatsu.com/resources/products/sys/pdf/eng/e_phemos.pdf .
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical-data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994). [CrossRef]
  4. B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996). [CrossRef]
  5. I. Ichimura, S. Hayashi, and G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997). [CrossRef]
  6. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74, 501–503 (1999). [CrossRef]
  7. T. Milster, T. Chen, D. Nam, and E. Schlesinger, “Maskless lithography with solid immersion lens nano probes,” Proc. SPIE 5567, 545–556 (2004). [CrossRef]
  8. D. Nam, T. D. Milster, and T. Chen, “Potential of solid immersion lithography using I-line and KrF light source,” Proc. SPIE 5754, 1049–1055 (2005).
  9. Semicaps, “Optical fault localization system,” http://www.semicaps.com/innovations.htm .
  10. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett. 72, 2779–2781 (1998). [CrossRef]
  11. Q. Wu, L. P. Ghislain, and V. B. Elings, “Imaging with solid immersion lenses, spatial resolution, and applications,” Proc. IEEE 88, 1491–1498 (2000). [CrossRef]
  12. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett. 77, 2109–2111 (2000). [CrossRef]
  13. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001). [CrossRef]
  14. D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” J. Microelectromech. Syst. 10, 450–459 (2001). [CrossRef]
  15. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16, 9501–9506 (2008). [CrossRef]
  16. F. H. Köklü, S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34, 1261–1263 (2009). [CrossRef]
  17. F. H. Köklü and M. S. Ünlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett. 35, 184–186(2010). [CrossRef]
  18. S. Y. Yim, J. H. Kim, and J. Lee, “Solid immersion lens microscope for spectroscopy of nanostructure materials,” J. Opt. Soc. Korea 15, 78–81 (2011). [CrossRef]
  19. T. Chen, T. Milster, D. Nam, and S. H. Yang, “Experimental investigation of solid immersion lens lithography,” Proc. SPIE 5754, 254–261 (2005).
  20. T. D. Milster, “Near-field optical data storage: avenues for improved performance,” Opt. Eng. 40, 2255–2260 (2001). [CrossRef]
  21. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008). [CrossRef]
  22. H. M. Guo, S. L. Zhuang, J. B. Chen, and Z. Liang, “Multilayered optical memory with bits stored as refractive index change. I. Electromagnetic theory,” J. Opt. Soc. Am. A 24, 1776–1785 (2007). [CrossRef]
  23. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008). [CrossRef]
  24. H. H. Hopkins, “On the diffraction theory of optical images,” Proc. R. Soc. A 217, 408–432 (1953). [CrossRef]
  25. K. Yamamoto, Y. Ichioka, and T. Suzuki, “Influence of light coherence at exit pupil of condenser on image-formation,” Opt. Acta 23, 987–996 (1976). [CrossRef]
  26. C. J. R. Sheppard and T. Wilson, “Image formation in scanning microscopes with partially coherent source and detector,” Opt. Acta 25, 315–325 (1978). [CrossRef]
  27. C. J. R. Sheppard and A. Choudhury, “Image formation in scanning microscope,” Opt. Acta 24, 1051–1073 (1977). [CrossRef]
  28. C. J. R. Sheppard and T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. 124, 107–117 (1981). [CrossRef]
  29. L. E. Helseth, “Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. 191, 161–172 (2001). [CrossRef]
  30. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef]
  31. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97, 053105 (2005). [CrossRef]
  32. Y. J. Zhang, “Design of high-performance supersphere solid immersion lenses,” Appl. Opt. 45, 4540–4546 (2006). [CrossRef]
  33. Y. J. Zhang, “Theoretical study of near-field optical storage with a solid immersion lens,” J. Opt. Soc. Am. A 23, 2132–2136(2006). [CrossRef]
  34. A. N. Vamivakas, R. D. Younger, B. B. Goldberg, A. K. Swan, M. S. Ünlü, E. R. Behringer, and S. B. Ippolito, “A case study for optics: the solid immersion microscope,” Am. J. Phys. 76, 758–768 (2008). [CrossRef]
  35. C. J. R. Sheppard and G. S. Huat, “Comment on ‘Theoretical analysis of numerical aperture increasing lens microscopy’ [J. Appl. Phys. 97, 053105 (2005)],” J. Appl. Phys. 100086106 (2006). [CrossRef]
  36. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun. 282, 1036–1041 (2009). [CrossRef]
  37. K. M. Lim, G. C. F. Lee, C. J. R. Sheppard, J. C. H. Phang, C. L. Wong, and X. Chen, “Effect of polarization on a solid immersion lens of arbitrary thickness,” J. Opt. Soc. Am. A 28, 903–911 (2011). [CrossRef]
  38. C. J. R. Sheppard and T. Wilson, “The image of a single point in microscopes of large numerical aperture,” Proc. R. Soc. A 379, 145–158 (1982). [CrossRef]
  39. P. Török, P. D. Higdon, and T. Wilson, “On the general properties of polarised light conventional and confocal microscopes,” Opt. Commun. 148, 300–315 (1998). [CrossRef]
  40. P. Török, P. D. Higdon, and T. Wilson, “Theory for confocal and conventional microscopes imaging small dielectric scatterers,” J. Mod. Opt. 45, 1681–1698 (1998). [CrossRef]
  41. P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15, 9293–9307 (2007). [CrossRef]
  42. J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective with high numerical aperture,” Opt. Lett. 25, 634–636 (2000). [CrossRef]
  43. H. M. Guo, S. L. Zhuang, J. B. Chen, and Z. C. Liang, “Imaging theory of an aplanatic system with a stratified medium based on the method for a vector coherent transfer function,” Opt. Lett. 31, 2978–2980 (2006). [CrossRef]
  44. L. Hu, R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express 19, 19280–19295 (2011). [CrossRef]
  45. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. Chen, “Resolution of aplanatic solid immersion lens based microscopy,” J. Opt. Soc. Am. A 29, 1059–1070 (2012). [CrossRef]
  46. H. M. Guo, S. W. Guo, J. B. Chen, and S. L. Zhuang, “Full and rigorous vector diffraction model for a multilayered optical disc,” Opt. Express 16, 2797–2803 (2008). [CrossRef]
  47. A. Abubakar and P. M. van den Berg, “Iterative forward and inverse algorithms based on domain integral equations for three-dimensional electric and magnetic objects,” J. Comput. Phys. 195, 236–262 (2004). [CrossRef]
  48. Y. Zhong and X. Chen, “MUSIC imaging and electromagnetic inverse scattering of multiple-scattering small anisotropic spheres,” IEEE Trans. Antennas Propag. 55, 3542–3549 (2007). [CrossRef]
  49. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A 253, 349–357 (1959). [CrossRef]
  50. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Multipole theory for tight focusing of polarized light, including radially polarized and other special cases,” J. Opt. Soc. Am. A 29, 32–43 (2012). [CrossRef]
  51. Y. Zhong and X. Chen, “An FFT twofold subspace-based optimization method for solving electromagnetic inverse scattering problems,” IEEE Trans. Antennas Propag. 59, 914–927 (2011). [CrossRef]
  52. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  53. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).
  54. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited