OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2360–2366

Experimental comparison of terahertz and infrared data signal attenuation in dust clouds

Ke Su, Lothar Moeller, Robert B. Barat, and John F. Federici  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2360-2366 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002360


View Full Text Article

Enhanced HTML    Acrobat PDF (588 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to study and compare propagation features of terahertz (THz) links with infrared (IR) links under different weather conditions such as turbulence, fog, and dust particles, THz and IR free space communication links at 625 GHz carrier frequency and 1.5 μm wavelength, respectively, with a maximum data rate of 2.5Gb/s have been developed. After propagating through the same channel perturbation caused by dust, attenuation of the carrier frequencies by dust as well as scintillation effects on both channels are analyzed by measuring the power attenuation and bit error rates. Attenuation by the presence of dust degrades the IR channel but exhibits almost no measurable impact on the THz signal. Numerical simulations of THz attenuation with different dust concentrations are presented and agree with the measured results.

© 2012 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(290.5930) Scattering : Scintillation
(040.2235) Detectors : Far infrared or terahertz
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Detectors

History
Original Manuscript: July 6, 2012
Revised Manuscript: September 26, 2012
Manuscript Accepted: September 27, 2012
Published: October 18, 2012

Citation
Ke Su, Lothar Moeller, Robert B. Barat, and John F. Federici, "Experimental comparison of terahertz and infrared data signal attenuation in dust clouds," J. Opt. Soc. Am. A 29, 2360-2366 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2360


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010). [CrossRef]
  2. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32, 143–171 (2011). [CrossRef]
  3. S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectrum 41(7), 58–60 (2004). [CrossRef]
  4. L. Moeller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393–395 (2008). [CrossRef]
  5. H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma, and Y. Kado, “8  Gbit/s wireless data transmission at 250 GHz,” Electron. Lett. 45, 1121–1122 (2009). [CrossRef]
  6. A. Hirata, T. Kosugi, H. Takahashi, J. Takeuchi, K. Murata, N. Kukutsu, Y. Kado, S. Okabe, T. Ikeda, F. Suginosita, K. Shogen, H. Nishikawa, A. Irino, T. Nakayama, and N. Sudo, “5.8 km 10 Gbps data transmission over a 120 GHz-band wireless link,” in IEEE International Conference on Wireless Information Technology and Systems (IEEE, 2010), pp. 1–4.
  7. L. Moeller, J. Federici, and K. Su, “2.5  Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source,” Electron. Lett. 47, 856–858 (2011). [CrossRef]
  8. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The Impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antennas Propag. 56, 1413–1419(2008). [CrossRef]
  9. Y. Yang, A. Shutler, and D. Grischkowsky, “Measurement of the transmission of the atmosphere from 0.2 to 2 THz,” Opt. Express 19, 8830–8838 (2011). [CrossRef]
  10. T. Utsunomiya and M. Sekine, “Rain attenuation at 103 GHz in millimeter wave ranges,” Int. J. Infrared Millim. Waves 26, 1651–1660 (2005). [CrossRef]
  11. A. Hirata, R. Yamaguchi, H. Takahashi, T. Kosugi, K. Murata, N. Kukutsu, and Y. Kado, “Effect of rain attenuation for a 10  Gb/s 120 GHz-band millimeter wave wireless link,” IEEE Trans. Microwave Theor. Tech. 57, 3099–3105 (2009). [CrossRef]
  12. S. Ishii, S. Sayama, and T. Kamei, “Measurement of rain attenuation in terahertz wave range,” Wireless Eng. Technol. 2, 119–124 (2011). [CrossRef]
  13. R. Yamaguchi, A. Hirata, T. Kosugi, H. Takahashi, N. Kukutsu, T. Nagatsuma, Y. Kado, H. Ikegawa, H. Nishikawa, and T. Nakayama, “10  Gb/s MMIC wireless link exceeding 800 meters,” in Radio and Wireless Symposium (IEEE, 2008), pp. 695–698.
  14. K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of performance degradation from terahertz and infrared wireless links in fog,” J. Opt. Soc. Am. A 29, 179–184 (2012). [CrossRef]
  15. C. M. Mann, “Towards terahertz communications systems,” in Terahertz Sources and Systems, R. Miles, P. Harrison, and D. Lippens, eds. (Academic, 2001).
  16. A. Lender, “The duobinary technique for high-speed data transmission,” IEEE Trans. Commun. Electron. 82, 214–218 (1963).
  17. D. Penninckx, M. Chbat, L. Pierre, and J. P. Thiery, “The phase-shaped binary transmission (PSBT): a new technique to transmit far beyond the chromatic dispersion limit,” IEEE Photon. Technol. Lett. 9, 259–261 (1997). [CrossRef]
  18. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12, 544–554 (2006). [CrossRef]
  19. H. Weichel, Laser Beam Propagation in the Atmosphere(Academic, 1990).
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Academic, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited