OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2381–2385

Scattering of on-axis Gaussian beam by a chiral spheroid

Bing Yan, Huayong Zhang, and Chenhua Liu  »View Author Affiliations


JOSA A, Vol. 29, Issue 11, pp. 2381-2385 (2012)
http://dx.doi.org/10.1364/JOSAA.29.002381


View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the generalized Lorenz–Mie theory framework, an analytic solution to the scattering of an on-axis Gaussian beam by a chiral spheroid is presented by expanding the incident Gaussian beam, scattered fields as well as internal fields in terms of appropriate spheroidal vector wave functions. The unknown expansion coefficients are determined by a system of linear equations derived from the boundary conditions. Numerical results of the normalized differential scattering cross section are shown, and the scattering characteristics are discussed concisely.

© 2012 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.2110) Physical optics : Electromagnetic optics
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: August 1, 2012
Revised Manuscript: September 18, 2012
Manuscript Accepted: September 25, 2012
Published: October 18, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Bing Yan, Huayong Zhang, and Chenhua Liu, "Scattering of on-axis Gaussian beam by a chiral spheroid," J. Opt. Soc. Am. A 29, 2381-2385 (2012)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-11-2381


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. G. Mackay and A. Lakhtakia, “Simultaneous negative-and-positive-phase-velocity propagation in an isotropic chiral medium,” Microw. Opt. Technol. Lett. 49, 1245–1246 (2007). [CrossRef]
  2. J. Dong, “Exotic characteristics of power propagation in the chiral nihility fiber,” Prog. Electromagn. Res. 99, 163–178 (2009). [CrossRef]
  3. N. Wongkasem and A. Akyurtlu, “Light splitting effects in chiral metamaterials,” J. Opt. 12, 035101 (2010). [CrossRef]
  4. M. S. Kluskens and E. H. Newman, “Scattering by a multilayer chiral cylinder,” IEEE Trans. Antennas Propag. 39, 91–96 (1991). [CrossRef]
  5. B. N. Khatir, M. Al-Kanhal, and A. Sebak, “Electromagnetic wave scattering by elliptic chiral cylinder,” J. Electromagn. Waves Appl. 20, 1377–1390 (2006). [CrossRef]
  6. V. Demir, A. Elsherbeni, D. Worasawate, and E. Arvas, “A graphical user interface (GUI) for plane-wave scattering from a conducting, dielectric, or chiral sphere,” IEEE Trans. Antennas Propag. Mag. 46, 94–99 (2004). [CrossRef]
  7. D. Worasawate, J. R. Mautz, and E. Arvas, “Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body,” IEEE Trans. Antennas Propag. 51, 1077–1084 (2003). [CrossRef]
  8. A. Semichaevsky, A. Akyurtlu, D. Kern, D. H. Werner, and M. G. Bray, “Novel BI-FDTD approach for the analysis of chiral cylinders and spheres,” IEEE Trans. Antennas Propag. 54, 925–932 (2006). [CrossRef]
  9. M. Yokota, S. He, and T. Takenaka, “Scattering of a Hermite–Gaussian beam field by a chiral sphere,” J. Opt. Soc. Am. A 18, 1681–1689 (2001). [CrossRef]
  10. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988). [CrossRef]
  11. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz–Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,” J. Opt. 19, 59–67 (1988). [CrossRef]
  12. G. Gouesbet, J. A. Lock, and G. Gréhan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]
  13. G. Gouesbet, K. F. Ren, L. Mees, and G. Gréhan, “Cylindrical localized approximation to speed up computations for Gaussian beams in the generalized Lorenz–Mie theory for cylinders, with arbitrary location and orientation of the scatterer,” Appl. Opt. 38, 2647–2665 (1999). [CrossRef]
  14. L. Mees, K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results,” Appl. Opt. 38, 1867–1876 (1999). [CrossRef]
  15. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Gréhan, “Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres,” Appl. Opt. 36, 5188–5198 (1997). [CrossRef]
  16. Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001). [CrossRef]
  17. F. Xu, K. F. Ren, G. Gouesbet, G. Gréhan, and X. Cai, “Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid,” J. Opt. Soc. Am. A 24, 119–131 (2007). [CrossRef]
  18. G. Gouesbet, F. Xu, and Y. P. Han, “Expanded description of electromagnetic arbitrary shaped beams in spheroidal coordinates, for use in light scattering theories: a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 2249–2267 (2011). [CrossRef]
  19. H. Y. Zhang and Y. P. Han, “Scattering of shaped beam by an infinite cylinder of arbitrary orientation,” J. Opt. Soc. Am. B 25, 131–135 (2008). [CrossRef]
  20. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957), Chap. 4.
  21. Y. P. Han, H. Y. Zhang, and G. X. Han, “The expansion coefficients of arbitrarily shaped beam in oblique illumination,” Opt. Express 15, 735–746 (2007). [CrossRef]
  22. C. Flammer, Spheroidal Wave Functions (Stanford University, 1957).
  23. L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979). [CrossRef]
  24. J. J. Wang and G. Gouesbet, “Note on the use of localized beam models for light scattering theories in spherical coordinates,” Appl. Opt. 51, 3832–3836 (2012). [CrossRef]
  25. S. Asano and G. Yamamoto, “Light scattering by a spheroid particle,” Appl. Opt. 14, 29–49 (1975).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited